
Appendix 3A 
Basics of State Variable Modeling 

 
The differential equations of a lumped linear network can be written in the form 
 

x ( )t = Ax ( )t + B u ( )t        (1) 
y ( )t = Cx ( )t + D u ( )t  

This system of first-order differential equations is known as the state equation of the 
system and is the state vector and is the input vector.  The second equation is 
referred to as the output equation.  is called the state matrix,  the input matrix,  
the output matrix, and

x ( )t u ( )t
A B C

D  the direct transition matrix.  One advantage of the state-space 
method is that the form lends itself easily to the digital and/or analog computer methods 
of solution. Further, the state-space method can be easily extended to analysis of 
nonlinear systems. State equations may be obtained from an nth-order differential 
equation or directly from the system model by identifying appropriate state variables. 

To illustrate how we select a set of state variables, consider an nth-order linear plant 
model described by the differential equation 
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where  is the plant output and is the plant input. A state model for this system is 
not unique but depends on the choice of a set of state variables.  A useful set of state 
variables, referred to as phase variables, is defined as 

( )y t ( )u t
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Taking the derivatives, we have 

1 2 2 3 3 4,     ,     ,    ,  and  is given bynx x x x x x x= = =  (2).   (3) 

0 1 1 2 1 ( )n n nx a x a x a x u t−= − − − − +  
or in matrix form 
 

1 1

2 2

1 1

0 1 2 1

0 1 0 0 0
0 0 1 0 0

( )
0 0 0 1 0

1
n n

n n

x x
x x

u t
x x
x a a a a x
− −

−

       
       
       
       = +
       
       
       − − − −       n

+    (4) 

 
and the output equation is 

[ ]1 0 0 0y = x        (5) 
Example A.1 
 
Obtain the state equation in phase variable form for the following differential equation. 
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3 22 4 6 8 10d y d y dy y u
dtdt dt

+ + + = ( )t  

The differential equation is third order, thus there are three state variables as follows 
1 2 3,     ,     x y x y x= = y=  

and the derivatives are 
1 2 2 3 3 1 2 3,     ,  and  4 3 2 5 ( )x x x x x x x x u= = = − − − + t

)

     
Or in matrix form  
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The M-file ode2phv.m is developed which converts an nth-order ordinary differential 
equation to the state-space phase variable form.  [A, B, C] = ode2phv(ai, k) returns the 
matrices A, B, C, where ai is a row vector containing coefficients of the equation in 
descending order and k is the coefficient of the right-hand side. 
 

ai = [2  4  6  8]; 
k = 10; 
[A, B, C] = ode2phv(ai, k) 

 
produces the following phase variable state representation 
 A =                   B  =  C  = 
             0     1     0                    0                   1    0    0 
            0     0     1                    0 
           -4   -3    -2                     5 
 
Equations of Electrical Networks 
 
The state variables are directly related to the energy-storage elements of a system.  It 
would seem, therefore, that the number of independent initial conditions is equal to the 
number of energy-storing elements. This is true provided that there is no loop containing 
only capacitors and voltage sources and there is no cut set containing only inductive and 
current sources. In general, if there are  loops of all capacitors and voltage sources, and cn

Ln  cut sets of all inductors and current sources, the number of state variables is 
   L C C Ln e e n n= + − −         (6) 

 where 
Le = number of inductors   

Ce  = number of capacitors   
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Cn = number of all capacitive and voltage source loops  

Ln =  number of all inductive and current source cut sets 
 
Example A.2 
 
Write the state equation for the network shown in Figure A.1. 
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Node equations are 

Figure A.1 Circuit of Example 2 
 
Define the state variables as current through the inductor and voltage across the 
capacitors. Write two node equations containing capacitors and a loop equation 
containing the inductor.  The state variables are , and 

21,c cv v Li . 

1 1
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4
c c i

L c c L
dv v vi v
dt

−
+ + = ⇒ = − − + iv i v  

2 2
2 1 20.5 0             2 2 2

1
c c

L s c c
dv vi i v v v
dt

− + − = ⇒ = − + +c si  

and the loop equation is 
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Simulation Diagram 
 
Equation (3) indicates that state variables are determined by integrating the 
corresponding state equation. A diagram known as the simulation diagram can be 
constructed to model the given differential equations. The basic element of the simulation 
diagram is the integrator.  The first equation in (3) is 
 

1 2x x=  
Integrating, we have 

1 2x x dx= ∫  
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The above integral is represented by the time-domain diagram shown in Figure 2 (a) 
similar to the block diagram or the time-domain diagram shown in Figure 2 (b) similar to 
the signal flow graph.  

2 ( )x t 1( )x t
2 ( )x t 1( )x t

(a)
(b)

1s−1
s

 
Figure A.2 Simulation diagram for integrator 

 
It is important to know that although the symbol 1/ is used for integration, the 
simulation diagram is a time domain representation. The number of integrators is equal to 
the number of state variables. For example, for the state equation in Example 1 we have 
three integrators in cascade, the three state variables are assigned to the output of each 
integrator as shown in Figure 3. The last equation in (3) is represented via a summing 
point and feedback paths. Completing the output equation, the simulation diagram known 
as phase-variable control canonical form is obtained. 
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Figure A.3 Simulation diagram for Example 1 

 
Transfer Function to State-Space Conversion 
Direct Decomposition  
 
Consider the transfer function of a third-order system 

2
2 1 0

3 2
2 1

( )
( )

b s b s bY s
U s s a s a s a

+ +
=

+ + + 0
       (7) 

where the numerator degree is lower than that of the denominator. The above transfer 
function is decomposed into two blocks as shown in Figure 4.  
 
 

( )W s
3 2

2 1 0

1
s a s a s a+ + +

2
2 1 0b s b s b+ +

( )U s ( )Y s

 
 

Figure A.4 Transfer function (7) arranged in cascade form 
 
Denoting the output of the first block as W s , we have ( )

3 2
2 1

( )( ) U sW s
s a s a s a

=
+ + + 0

       and         Y    2
2 1 0( ) ( ) ( ) ( )s b s W s b sW s b W s= + +

or 
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3 2
2 1 0( ) ( ) ( ) ( ) ( )s W s a s W s a sW s a W s U s= − − − +     

This results in the following time-domain equation 
2 1 0 ( )w a w a w a w u t= − − − +     and      2 1 0( )y t b w b w b w= + +  

 
From the above expression we see that  has to go through three integrators to get  as 
shown in Figure 5. Completing the above equations results in the phase-variable control 
canonical simulation diagram. 

w w

w 1
s

1
s

1
s

y( )u t

- -
-

w w w

0a
1a

2a

0b

2b
1b

+
+

+

 

2x 1x
3x

1x2x3x

Figure A.5 Phase variable control canonical simulation diagram. 
 
The above simulation in block diagram form is suitable for SIMULINK diagram 
construction. You may find it easier to construct the simulation diagram similar to the 
signal flow graph as shown in Figure 6.  

1s− 1s−1s−( )u t
1 yw w w w

0a−
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2a−
0b

1b
2b

1

 
Figure A.6 Phase variable control canonical simulation diagram.  

 
In order to write the state equation, the state variables 1( )x t , 2 ( )x t , and 3( )x t are assigned 
to the output of each integrator from the right to the left. Next an equation is written for 
the input of each integrator. The results are  
 

1 2x x=   

2 3x x=  

3 0 1 1 2 0 1 ( )x a x a x a x u t= − − − +  
and the output equation is 

0 1 1 2 3 3y b x b x b x= + +  
or in matrix form 
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It is important to note that the Mason’s gain formula can be applied to the simulation 
diagram in Figure 6 to obtain the original transfer function. Indeed ∆  of Mason’s gain 
formula is the characteristic equation. Also, the determinant of sI A−  matrix in (8), 
results in the characteristics equation.  Keep in mind that there is not a unique state space 
representation for a given transfer function.  
 

 
The Control System Toolbox contains a set of functions for model conversion. 
[A, B, C, D] = tf2ss(num, den) converts the system in transfer function from to state-
space phase variable control canonical form.  
 
Example A.3 
 
For the following transfer function  

2

3 2
( ) 7 2( )
( ) 9 26 2

Y s s sG s
U s s s s

+ +
= =

+ + + 4
 

(a) Draw the simulation diagram and find the state-space representation of the above 
transfer function. 
(b) Use MATLAB Control System Toolbox [A, B, C, D] = tf2ss(num, den) to find the 
state model. 
 
(a) Draw the transfer function block diagram in cascade form  
 

3 2

1
9 26 24s s s+ + +

2 7 2s s+ +
( )Y s( )U s ( )W s

 
From this we have 

3 2 2( ) 9 ( ) 26 ( ) 24 ( ) ( )    &      ( ) ( ) 7 ( ) 2 ( )s W s s W s sW s W s U s Y s s W s sW s W s= − − − + = + +  
or in time-domain 
 

9 26 24     &      y 7 2w w w w u w w= − − − + = + + w  
The above time-domain equations yield the following simulation diagram 
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To obtain the state equation, the state variables 1( )x t , 2 ( )x t , and 3( )x t are assigned to the 
output of each integrator from the right to the left. Next an equation is written for the 
input of each integrator. The results are  
 

1 2x x=   

2 3x x=  

3 1 2 124 26 9 ( )x x x x u= − − − + t

3

)

 
and the output equation is 

1 22 7y x x x= + +  
or in matrix form 
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(b) We write the following statements 
 num = [1  7  2]; den = [1   9   26    24]; 
 [A, B, C, D] = tf2ss(num, den) 
 
The result is 
 

A =                           B =        C =                      D = 
             -9    -26    -24        1        1    7    2            0 
               1      0       0          0 
              0      1       0         0 
 
Note that MATLAB assigns 1x  to the output of the first integrator, and 2x , and 3x  to the 
output of the second and third integrators.                 
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State-Space to Transfer Function Conversion 
 
Consider the state and output equations 

x ( )t = Ax ( )t + B ( )u t  
y = Cx ( )t + D ( )u t   

Taking the Laplace transform  
( ) ( ) ( )            [ ] ( ) ( ) 

( ) ( ) ( )
sX s AX s BU s sI A X s BU s
Y s CX s DU s

= + ⇒ − =
= +

 

Substituting for ( )X s  in the second equation above, we get 
1( ) [ ] ( ) ( )Y s C SI A BU s DU s−= − +  

or 
1( ) [ ]

( )
Y s C SI A B D
U s

−= − +  

 
In MATLAB [num, den] = ss2tf(A, B, C, D, i) converts the state equation to a transfer 
function for the ith input. 
 
Example A.4 
 
A system is described by the following state-space equations 
 

  1 1

2 2

0 1 0
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Obtain the system transfer function using the formula in (3.18) 
 

 1
2

5 1
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−
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[8 1]

6 1 8( ) [ ] [8 1]
5 6 5 6 5 6

s
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s s s s s s
−
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      +     = − = = =

+ + + + + +
 

Therefore 

2
8( )

5 6
sG s

s s
+

=
+ +

 

In MATLAB [num, den] = ss2tf(A, B, C, D, i) converts the state equation to a transfer 
function for the ith input. 
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Example A.5 
A system is described by the following state-space equations 
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3 3
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)x x

x x
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Find the transfer function, ( )( )
( )

Y s
U s

=G s . The following statements: 

A = [0   1   0;  0   0   1; -1  -2  -3];  B = [10;  0;  0]; 
C = [1   0   0];  D = [0]; 
[num, den] = ss2tf(A, B, C, D, 1) 
G = tf(num, den) 

results in  
num = 

       0.0000   10.0000   30.0000   20.0000 
den = 

       1.0000    3.0000    2.0000    1.0000 
Transfer function: 

            10 s^2 + 30 s + 20 
         --------------------- 
       s^3 + 3 s^2 + 2 s + 1 

 
Also, [z, p] = ss2tf(A, B, C, D, 1) converts the state equation to transfer function in 
factored form. 
 
MALAB Control System Toolbox contains many functions for model creation and 
inversion, data extraction, and system interconnections. A few of these functions for 
continuous-time control systems are listed below. For a complete list of all functions type 
help/control/control at MATLAB prompt. 

 
tf  Create transfer function models. 

    zpk  Create zero/pole/gain models. 
     ss  Create state-space models. 
     tfdata  Extract numerator(s) and denominator(s). 
     zpkdata Extract zero/pole/gain data. 
     ssdata  Extract state-space matrices. 
     append Group LTI systems by appending inputs and outputs. 
     parallel Generalized parallel connection (see also overloaded +). 
     series  Generalized series connection (see also overloaded *). 
     feedback Feedback connection of two systems. 
     connect Derive state-space model from block diagram description. 
 blkbuild Builds a model from a block diagram. 

 3A.9



 
The Control System Toolbox supports four commonly used representations of linear 
time-invariant (LTI) systems: tf, zpk, and ss objects. To create an LTI model or object, 
use the corresponding constructor tf, zpk, or ss.  For example,                                               
     sys = tf(1,[1 0]) .                                                        
creates the transfer function H(s) = 1/s.  The result sys is a tf object containing the 
numerator and denominator data. You can then manipulate the entire model as the single 
MATLAB variable sys. For more details and examples on how to specify the various 
types of LTI models, type ltimodels followed by tf, zpk, or ss.  
 
The functions tfdata, zpkdata, and ssdata are provided for extracting the parameters of 
the tf, zpk and ss objects. For example the command [num, den] = tfdata(T, 'v') returns 
the numerator and denominator of the tf object. The argument ‘v’ returns the numerator 
and denominator as row vectors rather than cell arrays. The Control System Toolbox 
contains seven more functions, which are useful for creating a single model out of its 
components.  
 
Example A.6 
 
Use feedback function to obtain the closed-loop transfer function and the tf2ss function 
to obtain the closed-loop state-space model 

−

( )R s 5( 1.4)
7

s
s
+
+

1
( 1)( 4)s s s+ +

10

( )C s

( )cG s ( )pG s
( )H s

 
The following commands 
 

Gc = tf(5*[1  1.4], [1  7])        % transfer function Gc 
Gp = tf([1], [1 5 4 0]);             % transfer function Gp 
H = 10;                       
G = series(Gc, Gp)                  % connects Gc & Gp in cascade 
T = feedback(G, H)                 % obtains the closed loop transfer function 
[num, den] = tfdata(T, 'v');      % returns num & den as row arrays 
[A, B, C, D]=tf2ss(num, den)  % returns the A,B, C, D matrices  

 % of the state space model 
result in 
 
Transfer function: 

              5 s + 7 
--------------------------------- 
s^4 + 12 s^3 + 39 s^2 + 78 s + 70  
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   A =          B =      C =       D =  
          -12    -39    -78    -70                  1                     [0   0   5   7]            0 
             1       0       0         0              0 
             0       1       0         0                 0 
             0       0       1         0                 0 
 
For analytical solution of state equation refer to the lecture notes on Chapter 3. 
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