
CHAPTER 3 
 
 
Sampled-Data Systems 
 
A discrete signal , or simply  obtained from an analog signal e t  is a number 
sequence that occurs repeatedly at instants of time T seconds apart.  T is the sampled 
period and 1/  is the sample rate in Hz. A discrete system is one whose operation is 
described by difference equation. A system having both discrete and continuous signals is 
called a sampled data system as shown in Figure 3.1. 
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Figure 3.1 Sampled data control system 
 
Digital-to-Analog Conversion 
 
The D/A converter is a device that converts the sampled signal  to a continuous 
signal . The weighted voltages are summed together to produce the analog output. 
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Analog-to-digital Conversion 
 
In the analog-to-digital converter, the analog signal is first converted to a sampled signal 
and then converted to a sequence of binary numbers. The sampling rate must be at least 
twice the bandwidth of the signal, or else there will be distortion. A satisfactory sampling 
rate is 20 Bω . The minimum sampling frequency is known as the Nyquist sampling rate. 
In Figure 3.2 the analog signal such as a voltage is sampled at periodic intervals and held 
over the sampling interval by a device called a zero-order sample-and-hold that yields a 
staircase approximation to the analog signal. Sampled are held in order to be digitalized 
by a digital counter.   
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Figure 3.1 Analog signal and the sample-and-hold signal 

 
Table 3.1 gives a 4-bit coding of an analog signal that may range between 0 to 10 V. The 
information in the table is shown in graphical form in Figure 3.3. 
     

Analog voltage Binary Representation 

0 - 2.212 0000 

2.212 - 3.9347 0001 

3.9347- 5.2763 0010 

5.2763 - 6.3212 0011 

 6.3212 - 7.135 0100 

 7.135 - 7.7687 0101 

7.7687 - 8.2623 0110 

8.2623 -  8.6466 0111 

8.6466 - 8.946 1000 

8.946- 9.1792 1001 

9.1792 - 10 1010 
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Figure2.3 Conversion of samples to digital numbers. 

 
Each binary number represents a range of analog voltage; hence there is a quantization 
error. For a 4-bit conversion, the maximum quantization error is . The 
qunatization error in 16-bit conversion, for example, corresponds to a signal-to-noise 
ratio (SNR) of 

42 6.25%− =

16
10SNR (in dB) 20log 2 96.3%= =                      

 
Modeling the Digital Computer 
 
Since signals are sampled at specified intervals and held causes the system performance 
to change with changes in sampling rate.  Thus the computer’s effect upon the signal 
comes from this sampling and holding. In order to model the computer we must come up 
with a mathematical representation of this sample-and-hold process. 
 
Modeling the Sampler 
 
The objective is to derive a transfer function model for the digital computer as 
represented by a sampler and zero-order-hold. For the sampled signal the Laplace 
transform is replaced by a related transform known as the z-transform. Sampling provides 
the mechanism for converting analog signals to digital signals. Sampling of a continuous-
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time signal e t  can be illustrated by a rotating switch that is closed for an instant every 
seconds as shown in Figure 3.2. 

( )
T

Switch closes at time t nT=

( )e t *( )e tτ

 
         Figure 3.4 Sampling illustrated by a switch  

 
The action of the switch can be considered to be the product of  and a sampling 
function 

( )e t
( )p t . Where ( )p t  is a periodic pulse train of period T , and pulse duration τ . 

The sampled signal e t  equals  for the *( ) ( )e t τ  seconds that the switch remains closed 
and is zero when the switch is open as shown in Figure 3.5. 
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Figure 3.5 A sampled waveform resulted by product of  with a pulse train. ( )e t
 
The equation of the sampled wave from is 
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k
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=∞
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= = − − − −∑  

If the pulse width τ  is small, e t  can be considered constant during the sampling period, 
and we have 
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k
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Taking the Laplace transform, we get 
( )

* 1( ) ( ) ( )
kTs kT s sk k

kTs

k k

e e eE s e kT e kT e
s s s

τ τ

τ

− − + −=∞ =∞
−

=−∞ =−∞

   −
= − =  

  
∑ ∑





 

Replacing se τ−  by its series expansion, we have 
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For small τ  we can neglect the higher terms,  
*( ) ( ) ( )

k k
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sE s e kT e e kT e
sτ
τ τ

=∞ =∞
−

=−∞ =−∞
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∑ ∑ −

−

    (3.1) 

Transforming back to time-domain, we have 
 

*( ) ( ) ( )
k

k
e t e kT t kTτ τ δ

=∞

=−∞

= ∑        (3.2) 

Thus, the result of sampling with rectangular pulses can be considered as a series of 
impulse functions of strength ( )f kTτ . The above equation can be considered as ideal 
sampler cascaded with τ , as shown in Figure 3.6. 
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Figure 3.6 Model of sampling with a rectangular pulse train. 
 
The ideal sampler for k  is  0≥

*

0
( ) ( ) kTs

k
E s e kT e

∞
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=
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0
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∞

=
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Note the similarity between the starred transform, *( )E s , and the z-transform ( )E z . The 
starred transform is defined as  
 

* 2( ) (0) ( ) (2 )Ts TsE s e e T e e T e− −= + + +  
and the z-transform is defined as  
 

1 2( ) (0) (1) (2)E z e e z e z− −= + + +  
 
Zero-Order Hold 
 
A sample-and-hold device is used to hold the previously converted signal while a new 
conversion takes place as shown in Figure 3.6. If we assume an ideal sampler (i.e. 1τ = ) 
then  is represented by a sequence of delta functions. The result is an output signal 
that changes in a staircase approximation toe t . Hence the output from the hold e is 
a sequence of step functions whose amplitude is e k at sampling instant. For an impulse 
at time , the Laplace transform of its resulting step, which starts at t , and end at 

 is 

*( )e t

t =
T

( ) ( )h t
( T )

0 0=
t =
 

 1( )
Ts

h
eG s
s

−−
=         (3.5) 
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∞
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Ideal Sampler  
Figure 3.7 Ideal sampler and zero-order hold. 

( )e t
*( ) ( ) ( )e t e kT t kTδ= − ( )he t

t0 0 T 2T 3T t 0 T 2T 3T t

Figure 3.8 Ideal sampling and the zero-order hold. 
 

From 2.3 the s-domain sample-hold operation is represented in Figure 3.9. 
 

*( )E s 1 Tse
s

−−( )E s

T
( )hE s

 
 

Figure 3.9 Representation of sampler/data hold 
Where the starred transform *( )E s , is given by 2.3. Therefore also shown as ( )hE s

( )E s is 
  

0
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−
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Recall that in the previous chapter the complex variable z was defined by 
 

sTz e=          (3.7) 
 
Example 3.1    
Find if the input is a unit step, i.e., *( )E s ( ) 1,  for 1,  2,  e kT k= = . 

* 2

0
- 2

( ) ( ) (0) ( ) (2 )

                                    1
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k
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E s e kT e e e T e e T e
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∞
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=
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or  
* 1( )

1 TsE s
e−

=
−

 

Substituting from 2.7 
*

1
1( )

11
zE s

zz−
= =

−−
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The above transfer function is the z-transform of the unit step and we see the similarity 
between the starred transform and the z-transform, i.e.,  

 
*( ) ( ) sTz eE s E z ==         (3.5) 

 
Pulse Transfer Function 
 
We now apply the z-transform to obtain the transfer function of a sampled-data system. 
Consider the system shown in Figure 3.10(a). 
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−−( )E s
T
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T

(a) (b)  
Figure 3.10 Open-loop sampled-data system. 

 
We denote the product of the zero-order hold transfer function and transfer function as 

as shown in Figure 3.10(b), i.e.,  ( )G s
1( ) ( )

sT

p
eG s G s
s

−−
=         (3.6) 

From now on the sampled-data transfer function is understood to contain the zero-order 
hold, so 

*( ) ( ) ( )C s G s E s=          (3.7) 
 
If the input is sampled, the output is still continuous. If, however, we are satisfied with 
finding the output at the sampling instant and not in between, we can add a phantom 
sampler, which is in synchronism with the input as shown in Figure 3.11.  
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( )C s( )R s *( )R s

T
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Figure 3.11 Open-loop sampled-data with phantom sampler. 
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Since the impulse response of a transfer function G s , is , we can write the time 
output of as the sum of impulse responses generated by the input, thus 

( ) ( )g t
( )G s

0
( ) ( ) ( )

n
c kT r nT g k n T

∞

=

= ∑        (3.9) 

0
( ) ( ) k
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C z c kT z

∞
−

=

= ∑         (3.10) 

Substituting (3.9) into (3.10), we get 
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0 0
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Letting  m k n= −

0 0
( ) ( ) ( ) m n
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∞ ∞
− −

+ = =
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Since , or  yield negative values of for , can change the lower 
limit from to . The above expression is written as 

0m n+ =
m n

m = −
0 m =

n

n−

m 0n >
+ = 0

       (3.11) 
0 0

( ) ( ) ( )k

m n
C z g mT z r nT z

∞ ∞
−

= =

= ∑ ∑
or 

( ) ( ) ( )C z G z R z=         (3.12) 
 
Equation (3.12) is a very important result, since it shows that the transform of the 
sampled output is the product of the transforms of the sampled input and the pulsed 
transfer function of the system. Recall that although the output of the system is 
continuous function, we had to make an assumption of a sampled output (phantom 
sampler) in order to arrive at the compact result of Equation (3.12). 
 
Converting G  plant transfer function in cascade with z.o.h. to sampled-data 
transfer function G(s) 

p (s)

 
One way of finding the pulse transfer function G z , is to start with , find , and 
then use the z-transform table to find G z . This is illustrated in the following examples. 

( ) ( )G s ( )g t
( )

 
Example 3.2 (Example 3.6 textbook) 
 

Given a z.o.h. in cascade with 1( )
1pG s

s
=

+
 or 

1 1( )
1

TseG s
s s

−−
=

+
 

(a) Find the sampled data transfer function  ( )G z
(b) EvaluateG z  if the sampling time T( ) 1=  second 
 
We can find a general solution by moving the s in the denominator of the z.o.h. to , 
i.e., 

( )pG s

( )
( ) (1 ) pTs G s

G s e
s

−= −  

from which 
1 ( ) ( )1( ) (1 ) ( )pG s G szG z z

s z s
−    −

= − =  
   
Z Z p

     (3.13) 
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We now find the inverse Laplace transform of 2
( )

( ) pG s
G s

s
=  

2
( ) 1 1( )

( 1)
pG s

G s
s s s s s

1
1

−
= = = +

+ +
 

Therefore,  

2 2( ) 1         ( ) 1t kg t e g kT e− −= − ⇒ = − T  
From the z-transform table 
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1 1 T
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Substituting in (3.13) 
1 1( ) 1

1

T

T T
z z z z eG z

z z z e z e z e
1

T

−

− − −
− − = − = − = − − − 

−
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(b) For T second 1=

 
1

1
1 0.6321( )

0.3679
eG z

zz e

−

−
−

= =
−−

 

 
MATLAB control system toolbox function Gz = c2d(Gs, T, ‘method’) converts the 
continuous-time LTI  model Gs to a discrete-time model Gz with sample time T.  The 
string ‘method’ selects the discretization method among the following:  
 
'zoh'  Zero-order hold on the inputs 
'foh'  Linear interpolation of inputs (triangle appx.) 
'tustin' Bilinear (Tustin) approximation 
'prewarp’ Tustin approximation with frequency prewarping.   
 
The default is 'zoh' when METHOD is omitted. Also function c2dm can be used when 
either num and den of a transfer function or the A, B, C, D parameters of the state models 
are defined. That is we use [Ad, Bd, Cd, Dd] = c2dm(A, B, C, D,T , 'method') which 
converts the continuous-time state-space system (A, B, C, D) to discrete time using 
'method': Also [numd, dend] = c2dm(num, den ,T, 'method') converts the continuous-
time polynomial transfer function to discrete time using 'method'. 
  
To find the sampled-data transfer function for in Example 3.2, we use the following 
commands: 

( )G s

 
 num = [0  1]; 
 den = [1  1]; 

Gs = tf(num, den) 
T = 1                     % sampling time 
Gz = c2d(Gs, T, 'zho')      

 
The result is 

  

 49



Transfer function: 
 

   0.6321 
---------- 
z - 0.3679 

 
Sampling time: 1 
 
This is the same result as found in Example 3.2. 
 
Example 3.3 (Example 12.7 Textbook) 
 
Find the step response of the sampled-data system in Example 3.2 when sampling time 
T=1 second. 
 

C(z) = G(z)E(z) 
 

For step input ( )
1

zE z
z

=
−

 and from Example 3.2 
1

1
1 0.6321( )

0.3679
e

zz e

−

−
−

= =
−−

G z  

Therefore 
0.632( )
0.3679 1

zC z
z z

=
− −

 

or 
 

( ) 0.632 1 1 1
0.3679 1 1 0.3679

C z
z z z z z

−
= = +

− − − −
 

Therefore 
 

 ( )
1 0.3679

z zC z
z z

−
= +

− −
 

The inverse z-transform is 
  ( ) 1 (0.3679)KC Kt = −
For  0,1, 2,k =

  

0

1

2

3

(0) 1 (0.3679) 0

(1) 1 (0.3679) 0.6321

(2) 1 (0.3679) 0.8646

(3) 1 (0.3679) 0.9502

c

c

c

c

= − =

= − =

= − =

= − =
 etc. 
 
We can use MATLAB to find the solution of Example 3.2-2.3. (chd3ex3.m) 
 
We use the following commands: 
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 numg = [0  1]; 
deng = [1  1]; 
T = 1; 
[numz, denz] = c2dm(numg, deng, T, 'zho') % discrete-time num, den 
dstep(numz, denz), grid 

 
The result is 
 
 numz = 
    0    0.6321 

denz = 
  1.0000   -0.3679 

 
Figure 3.12 Response for Example 3.3 

 
In Simulink we can use the discrete transfer function to simulate the response in Example 
3.3. (SimChd3ex3.mdl) 

ScopeStep

1 ( )u t
0.6321

0.3679z −
Discrete

Transfer Fcn  
Figure 3.13 Simulink model for Example 3.3. 

 
The result is as shown. 
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Figure 3.14 Simulink response for Example 3.3. 

 
The Scope plot in SIMULINK 4.0 is in yellow color. To produce a Figure plot and 
change the trace color I have written a script function named plotscope. To produce a 
figure plot type plotscope at MATLAB prompt, then click on the scope (outside the plot 
area) and hit Enter.  The plot in Figure 3.14 is produced. 
 
Block Diagram Reduction 
 
When manipulating block diagrams for sampled-data systems, you must be careful and 
remember the definition of the sampled data system transfer function. For example, 

1 2 1 2{ ( ) ( )} ( ) ( )G s G s G z G z≠Z . That is, G , must be multiplied together before 

taking the z-transform. We use the notation 
1( )s 2 ( )G s

1 2{ (G G 1 2)} (s G G z= )Z . 
 

( )G s
( )C s( )E s *( )E s

T

*( )C s

1( )G s
( )C s( )E s *( )E s

T

*( )C s
2 ( )G s

1( )G s
( )C s( )E s *( )E s

T

*( )C s
2 ( )G s

1( )G s
( )C s( )E s

*
1[ ( ) ( )]E s G s

T

*( )C s
2 ( )G s

T

T

T

TT

1( ) ( )E s G s
2 ( )G z

1 2 ( )G G z

( )G z

1 2( ) ( )G z G z

( )E z

( )E z

( )E z

1( ) ( )E z G z

( )C z

( )C z

( )C z

( )C z

(a)

(b)

(c)

(d)  
Figure 3.15 Sampled-data systems and their z-transform 

 
One operation we can always perform is to place a phantom sampler at the output of any 
subsystem that has a sampled input, provided that the nature of the signal sent to any 
other subsystem is not changed. Figure 3.15(a) is the standard pulse transfer function. 
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Figure 3.15(b) there is no sampler between G and , thus we have a single 

transfer function denoted by 
1( )s 2 ( )G s

1 2 ( )G G s , Thus ! 2 ( )GG z( )C z ( )E z= . In Figure 3.15(c) the 
output is . Similarly the output in Figure 3.15(d) is 

. 
1 2( ) ( ) ( ) ( )C z G z G z E z=

1 2( ) ( ) ( )G z G z E z( )C z =
 
Example 3.4 (Example 12.8 textbook) 
 
The sampled-data open-loop control system contains a digital filter or digital controller as 
shown in Figure 12.16.  Find the step response of the system.  
 

( )E s ( )E s ( )C s

( )e kT( )e t ( )m kT
( )M s

( )m t ( )c t
( )pG sDigital

controller
A/D D/A

Plant
( )M s

 
Figure 12.16 Open-loop system with digital controller 

The continuous-time signal e t  is converted into the number sequence . The 
digital controller processes this number and produces the output number sequence 

. The D/A converts the umber sequence into a continuous signal which will 
act on the plant dynamic. Representing the digital controller by the transfer function 

, the open-loop sampled data block diagram is obtained as shown in Figure 12.17. 

( ) ( )e kT

(m kT

( )D z

) ( )m kT

 

( )D z
( )M z( )E s ( )E z

T

( )C s

( )e kT( )e t ( )m kT
( )M s

( )m t ( )c t
1 sTe

s

−− ( )pG s

  
Figure 12.17 Sampled-data control system. 

 
( ) ( ) ( )M z D z E z=  

1( ) ( ) ( ) ( ) ( )
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eC s G s M s G s M z
s

− −
= =  

 
 

Therefore, 
1( ) { ( ) ( )} ( ) ( )

Ts

p p
eC z G s M s G s M z
s

− − = =  
  

Z Z  

1( ) ( ) ( ) ( ) ( ) ( ) ( )
Ts

p
eC z G s D z E z G z D z E z
s

− − == = 
  
Z  

Let 1( )
1p s

=
+

G s  and suppose the controller is a PD controller defined by the difference 

equation  
( ) 2 ( ) ( 1)m kT e kT e k T= − −  

Finding the z-transform of the above equation 

 53



1 1( ) 2 1( ) 2 ( ) ( )      ( ) 2
( )

M z zM z E z z E z D z z
E z z

− − −
= − ⇒ = = − =  
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Ts

pTs
p

G seG z G s e
s s

−
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    
Z Z   

2
( ) 1 1 1         ( ) 1

( 1) 1
p tG s

g t e
s s s s s

−−
= = + ⇒ = −

+ +
 

{ }1 1 1( ) (1 ) 1 1
1

T
kT

T T
z z z z eG z z e

z z z e z e z e

−
− − 1

T− − −
− − = − − = − = − = − − − 

Z −
−

 

1 2 1 (2 1)(1( ) ( ) ( ) ( )
1 ( 1)( )

T T

T T
e Z z z eC z G z D z E z

z zz e z z e

− −

− −
− − − −

= = =
−− −

)
−

 

Let C z  1( ) ( )z F z−=
Then 

( ) (2 1)(1 ) 1 1 2
1( 1)( )

T T

T T
F z z e e

z zz z e z e

− −

− −
− − −

= = +
−− − −

 

or  
(1 2 )( )         ( ) 1 (1 2 )

1

T
T k

T
z e zF z f k e e

z z e

−
T− −

−
−

= + ⇒ = + −
− −

 

Since , then  1( ) ( )C z z F z−=
( 1)( ) [1 (1 2 ) ( 1)T k Tc k e e u k− − −= + − −  

 
Closed-Loop Sampled-Data Transfer Function 
To obtain the closed-loop sampled-data transfer function, the following phantom 
samplers are added to the block diagram in Figure 3.18(a).  Since the response in (a) is 
valid only the sampling instants a sampler S  can be added. Also and are added at 
the inputs of the summing point whose output is sampled, which results in the block 
diagram shown in Figure 3.18(b). Next we move the sampler  and the block G  
ahead of the pickoff point.  

4 2S 3S

1S 1( )s
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( )G s
( )C s

*( )C s

1S

( )H s

−

( )R s

( )G s
( )C s *( )C s

1S

( )H s

−

( )R s *( )R s

2S

3S

4S

( )G s
( )C s

1S
( ) ( )G s H s

−

( )R s *( )R s

2S

3S

1S 4S

( )G z
( )C z

( )GH z

−

( )R z

( )G z
1

1 ( )GH z+
( )

1 ( )
G z
GH z+

( )R z ( )C z ( )C z( )R z

(a)

(b)

(c)

(d)

(e) (f)
Figure 3.18 Steps in block diagram reduction of a sampled-data system. 

The result is that the feedback path would be multiplied by as shown in Figure 
3.18(c). The closed-loop system has now a sampled input and a sampled output. Since 
each block has a sampler we can represent the system in z-domain as shown in Figure 
3.18(d). Reducing the z-domain block diagram yields the final result shown in Figure 
3.18(f).  

( )G s
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