
CHAPTER 4 
 
Analysis and Design of Digital Control Systems 

 
The analysis and design of sampled-data control systems is similar in principal to the 
design of continuous-data control systems.  The design objective is basically that of 
determining the controller so that the system will perform in accordance with 
specifications. In this chapter we shall investigate the important topics of stability, 
steady-state error, root-locus, and frequency response as applied to the sampled-data 
system. 
 
Stability Analysis in the z-plane 
 
A linear continuous feedback control system is stable if all poles of the closed-loop 
transfer function lie in the left half of the s-plane. Consider the closed-loop transfer 
function T s , which is transformed into a sampled-data transfer function T z . The z-
plane is related to the s-plane by the transformation 
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From (1.3) it is clear that points on the jω -axis, i.e., 0s jω= + , maps into points 
1z Tω= ∠ , namely a unit circle in the z-plane as shown in Figure 4.1 
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Figure 4.1 Mapping regions of the s-plane onto the z-plane 

 
Points with negative values of σ  in the s-plane will map into points |  in the z-plane, 
i.e., inside the unit circle. Points with positive values of 

| 1z <
σ  will map into points , 

namely outside the unit circuit. Finally point at origin 
1z >

0s =  maps into the point  in 1z =
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the z-plane. Thus for closed-loop sampled-data system stability we have the following 
criterion: 

• The sample-data system is stable if roots of the z-domain characteristic equation 
lie inside the unit circle in the z-plane. 

• The sample-data system is marginally stable if roots of the z-domain 
characteristic equation lie on the unit circle in the z-plane. 

• The sample-data system is unstable if roots of the z-domain characteristic 
equation lie outside the unit circle in the z-plane. 

The relation between s-domain poles and z-domain poles and the corresponding step 
response is illustrated in Figure 4.2. 

s-domain Time-domain responsez-domain

 
Figure 4.2 Examples relating pole locations to time response. 
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The important factor determining the stability in sampled-data system is the effect of 
sampling rate on the transient response. Changes in sampling rate not only change the 
nature of the response from overdamped to underdamped but also can turn a stable 
system into an unstable one.  
 
Example 4.1 
 
For the sampled data system shown determine the system stability for and 10K = 80K =  

 and sampling rate is T  second. 25a = 0.1=
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Figure 4.3 A closed-loop sampled system 
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Substituting for and T , the result is a

2
(0.0633 0.0285) (0.0633 0.0285)( )
( 1)( 0.082) 1.08 0.082

K z K zG z
z z z z

+ +
= =

− − − +
 

 
The closed loop response is  

2
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(a) For , the characteristic equation is  and the roots are 
, therefore |

10K =
0.2246 j0.5628±

2 0.45 0.367z z− +
| 0.606z = , i.e., the roots are inside the unit circle and the 

system is stable.  
(b) For , the characteristic equation is , and the roots are 

, − . Since | , we have a root outside the unit circle and system is 
unstable.  

80K =
0.0726

2 3.98 2.367z z+ +
3.25− | 1z >

 
Example 4.2   (chd4ex2.m) 
 
For the system in Example 4.1, use MATLAB to find the value of K for marginal 
stability. 
 
We use the following commands: 
num = 25; 
den = [1  25  0]; 
Gp = tf(num, den)                                                                        % Plant transfer function 
T = 0.1;                                                                                                    %  Sampling time 
[numz, denz] = c2dm(num, den, T, 'zoh');          % open-loop sampled-data num and den  
Gz = tf(numz, denz, 0.1)                              % Open-loop sampled-data transfer function    
 
for K = 1: 0.01: 40 
    Tz = feedback(K*Gz, 1);                       % Closed-loop sampled data transfer function 
     [numT, denT] = tfdata(Tz, 'v');  % Returns the num and den of the closed-loop SDTF 
     r = roots(denT);                                                 % Roots of the sampled-data char. Eq. 
     rmag = max(abs(r));                                            % Absolute value of the largest roots 
     if rmag >= 1;                            % If magnitude of the largest root >= 1 beark the loop 
        break 
     end 
end    
  
K                                                                              %  Value of K for marginal stability 
disp(['        Roots         Magnitude']) 
disp([r  abs(r)])                              
 
The result is 
 
Transfer function: 
     25 

---------- 
s^2 + 25 s 

  
  
Transfer function: 
   0.06328 z + 0.02851 

----------------------- 
z^2 - 1.082 z + 0.08208 
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 Sampling time: 0.1 
 
K = 

32.2000 
 
        Roots                   Magnitude 
  -0.4778 + 0.8785i 1.0000           
  -0.4778 - 0.8785i 1.0000      
 
The value of which causes the poles of the closed-loop sampled-data transfer function 
to lie on the unit circle is 32.2. This results in a system with marginal stability.  You 
should try to change the sampling time to see its effect on the system stability.  

K

 
For continuous-time system we used Routh array to find the number of roots in the right-
half s-plane or establish the range of for marginal stability. The Routh array cannot be 
applied directly to the characteristic equation in z-domain. Stability testing for a discrete-
time system involves determining whether all the poles of the system’s z-transfer 
function are within the unit circle on the z-plane. A method analogous to Routh-Hurwitz 
array is the Jury’ Test.   

K

 
Bilinear transformation 
 
A discrete-time system is stable if and only if all poles of its z-transfer function are within 
the unit circuit on the complex plane. The bilinear transformation  

2 1(
1
Wz

T W
+

=
−

)          (4.3) 

 
maps the unit circle to the left half-plane on the complex plane by making a change of the 
variable from to W , and so is very useful in relating discrete-time situation to 
equivalent continuous-time ones. If is assumed to be 1, the bilinear transformation 
becomes  

z
T

 
The Routh-Hurwitz array can now be applied to the resulting characteristic polynomial 
expressed in terms of W to determine stability. 
 

1
1
Wz
W

+
=

−
         (4.3b) 

 
Example 4.3  
 
For the sampled-data transfer function given in Example 4.2 make the bilinear 
transformation and find the characteristic equation in terms of W . Apply Routh array and 
determine range of  for stability.  K
 
The open-loop sampled data transfer function is 
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Substituting for z from (4.3b), we get  
2

2

( 0.0348 0.0570 0.0918) ( )
2.1642 1.8358

K W WG W
W W

− − +
=

+
 

The characteristic equation is 
2
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results in the polynomial 
 

2(2.1642 0.0348 ) (1.8358 0.057 ) 0.918 0K W K W K− + − +  
Forming the Routh array, we have 

2

1

0

2.1642 0.0348          0.918k 2.1642 / .0348 62.2
1.8358 0.057                                  1.8358 / 0.057    32.2
0.0918                                    0                     

W K K
W K K K
W K K

− ⇒ <
− ⇒ <

⇒ >

K⇒ <
⇒ <  

 
Therefore, the system is stable if 32.2K < . This is the same result obtained in Example 
4.2 sweeping  in a MATLAB loop. You must bear in mind that the range of for 
stability is a function of the sampling time T . (See Example 13.9 in the textbook for 
another example of bilinear transformation and application of Routh array).  

K K

 
Range of T for stability 
 
In Example 4.2 as the sampling time T  is decreased, the value of  for marginal 
stability will increase. For example if sampling time is changed to T

K
0.01= , the gain for 

marginal stability becomes  In fact as T  becomes infinitesimally small the 
value of  for stability approaches infinity. This is evident from the characteristic 
equation of the continuous-time system in Example 2.1, 

208.7K =
K

2 25s s 25 0K+ + =  where 
system is stable or all .  Sapling time plays an important role in stability of the 
discrete-time systems.  

K < ∞

 
Example 4.4 
 
Determine the range of sampling interval T , for which the sampled-data system shown in 
Figure 4.4 is stable.  

1 Tse
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Figure 4.4 Digital system for Example 4.4. 
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Taking the z-transform 
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The closed-loop transfer function is 
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System is stable if 
11 9Te− <   

or 

 11     or   1.2222       0 < 0.20
9

T Te e T< < ⇒ <  

System is stable if T  second or the sampling frequency 0.2<
1

0.2
f >  or 5 Hz.  

 
Transient Response 
 
The standard form of the second-order continuous-time transfer function is given by 

2

2( )
2

n

n n
T s

s s
ω

2ζω ω
=

+ +
       (4.4) 

where nω is the natural frequency and ζ is the damping ratio. The damping ratio gives us 
an idea about the nature of the transient response. It gives us a feel for the amount of 
overshoot and oscillation that the response undergoes. The transient response of a 
practical control system often exhibits damped oscillations before reaching steady state.  
 
Roots of the characteristic equation 2 22 0n ns sζω ω+ + =  are 

 
2

1,2 1
    

n ns j
j

ζω ω ζ

σ ω

= − ± −

= +
       (4.5) 

 
The underdamped response ( 1ζ < ) to a unit step input, subject to zero initial condition, is 
given by 

2
2

1( ) 1 sin( 1 )
1

nt
nc t e tζω ω ζ

ζ
−= − − +

−
θ      (4.6) 

where 
2

1 1
tan

ζ
θ

ζ
− −

=  

The performance criteria that are used to characterize the transient response to a unit step 
input include rise time , peak time rt pt , percent overshoot , and settling time . .PO st . To 
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find the time corresponding to the peak value, the derivative of (4.5) is set to zero. This 
yields the peak time 

21
p

n

t π π
ωω ζ

=
−

=         (4.7) 

where ω is the damped frequency of oscillation. The corresponding peak value is 
2/ 1/( ) 1p ptc t M e ζπ ζ−= = +        (4.8) 

The percent overshoot is defined as  
maximum value  final value. . 100

final value
PO −

= ×  

Since the final value is 1, we have 
2/ 1. . 100PO e ζπ ζ− −= ×        (4.9) 

From (4.5) it is evident that the step response time constant is  
1

n
τ

ζω
=          (4.10) 

Settling time is the time required for the response to settle within a small percent of its 
final value. Typically, this value may be assumed to be 2± percent of the final value. This 
is achieved approximately within four time constants, that is, 

4st τ          (4.11) 
The behavior of the step response can easily be predicated from the location of the s-
domain poles.  

nζω−

21njω ζ−

θ

nω
damping ratio:    cosζ θ=

1Time constant:  
n

τ
ζω

=

σ

ω

 
Figure 4.5 s-plane poles of a second-order continuous-time transfer function. 

The vertical lines on the s-plane are lines of constant τ or constant settling time.  

1
1

ns j j jσ ω ζω ω
τ

= + = − + = − + ω  

Substituting into sTz e=  
1

1
T j jz e e r eσ ω ω= =         (4.12) 

Therefore the vertical lines on the s-plane are mapped into circle of radius 1
1

Tr eσ= . If 
σ is negative, the circle has a smaller radius than the unit circle. If σ is positive, i.e., 
vertical lines in the right-half s-plane are mapped into circles with radius larger than the 
unit circle as shown in Figure 4.6. 
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3Teσ
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Figure 4.6 Mapping constant vertical lines (constant τ ) into z-plane. 
 
From (4.7) it is evident that horizontal lines in s-plane are lines of constant ω or constant 
peak time pt . The horizontal lines are characterized by 1s jσ ω= + , where 1ω  is 

constant. Substituting into sTz e= , we have 
1j T jTz e e e e 1Tω θσ σ= =         (4.13) 

 
Equation (4.13) represents radial lines at an angle of 1 1Tθ ω= . If σ is negative, that 
section of the radial line lies inside the unit circle. If σ is positive, that section of the 
radial line lies outside the unit circle.  Horizontal lines in s-domain are lines of constant 
frequency, which are mapped into radial lines in z-domain as shown in Figure 4.7. 

σ

ω

1Tω
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2Tω
3Tω

1jω

2jω

3jω

Unit circle

 
Figure 4.7 Mapping constant frequency lines into z-plane. 

Finally, we map radial lines of constant damping ratio ( cosζ θ= ). From Figure 4.5, we 
have 
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Since sTz e=  

2 21 1
T T

j Tz e e e T
ζ ζω ω
ζ ζω ω

− −
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The radial lines of constantζ are mapped into the z-plane in according to equation (4.14). 

σ0

s-plane z-plane
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0.9ζ =

0.6ζ =
0.3ζ = 0ζ =

jω

0ζ =

0.3ζ =

0.6ζ =

0.9ζ =

1− 10
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Figure 4.8 Mapping constant damping ratio into z-plane. 

Thus, using the mapping illustrated in Figure 4.8-3.8, we can assign z-domain 
specifications similar to the time-domain specification. This will be illustrated through 
several examples after we consider the root-locus applied to the z-plane. 
 
Steady-State Errors 
 
We now examine the effect of sampling upon the steady-state error for digital systems. 
In digital system, the placement of the sampler changes the open-loop transfer function. 
The derivation of the steady-state error will be based on the typical placement of the 
sampler after the error. Consider the digital system in Figure 4.9(a), where the digital 
computer is represented by the sampler and zero-order hold. The transfer function of the 
plant is and the transfer function of the z.o.h. by . Letting G s equal 
the product of the z.o.h and and using the block diagram reduction technique for 

sampled-data system, we can find the sampled error 

( )pG s (1 ) /sTe−

( ) ( )

s ( )
( )pG s

*E s E z= . 
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Figure 4.9 Digital feedback control system with z-domain equivalent block diagram. 
From Figure 4.9(d) 

1 (( ) ( )    and   ( ) ( )
( ) 1 ( )

G zE z C z C z R z
G z GH z

= =
+

)  

Therefore 
1( ) ( )
( )

E z R z
GH z

=         (4.15) 

From the final value theorem for discrete signals, we have 
*

1
( ) lim(1 ) ( )

z
e z−

→
∞ = − 1 E z        (4.16) 

where e is the final sampled value of , or the final value . *( )∞ ( )e t ( )e kT
 
Thus, 

* 1

1 1

1 1 1( ) lim(1 ) ( ) lim( ) ( )
1 ( ) 1 ( )z z

ze z R z
zGH z GH z

−

→ →
R z−

∞ = − =
+ +

  (4.17) 

We now consider three typical inputs, unit step, unit ramp, and unit parabolic inputs. 
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Unit Step 

( ) ( )        ( )
1
zr kT u kT R z
z

= ⇒ =
−

 

Substituting in (4.17) 
* *

1
1

1 1( )     or      ( )       where   lim ( )
11 lim ( ) p zp

z

e e K
KGH z →

→

∞ = ∞ = =
++

GH z    (4.18) 

Unit Ramp 
 
Substituting in (4.17) 
 

2( ) ( )        ( )
( 1)
Tzr kT kTu kT R z
z

= ⇒ =
−

 

* *

1
1

1 1( )     or      ( )       where   lim( 1) ( )
lim( 1) ( ) v zv
z

Te e K
K Tz GH z →

→

∞ = ∞ = = −
−

z GH z    (4.19) 

Unit Parabolic 
 
Substituting in (4.17) 
 

2
2

3
1 (( ) ( ) ( )        ( )
2 2( 1)

T z zr kT kT u kT R z
z

1)+
= ⇒ =

−

* *
2 1

1

1 1( )    or     ( )     where   lim( 1) ( )
lim( 1) ( )

a za
z

Te e K
K Tz GH z →

→

∞ = ∞ = = −
−

2z GH z    (4.20) 

The equations developed for steady-state error are similar to the equations developed for 
the analog systems. Whereas multiple placements at the origin of the s-plane reduced 
steady-state error to zero in the analog case, we can see that multiple pole placements at 

 reduce the steady-state error to zero. This conclusion makes sense when we 
consider that maps into 

1z =
0s = 1z = under sTz e= . 

 
Example 4.5 
In Figure 4.9(a), the plant transfer function is 

10( )
( 1pG s
s s

=
+ )

 and ( ) 1H s =  

Find the steady-state error for step, ramp, and parabolic inputs. 

2
1 10 1 1( ) 10(1 )

( 1) 1

Ts
TseG s e

s s s s ss

−
−− − 1 = = − + + + + 

 

The z-transform is then 
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For a step input, 
*

1

1lim ( )           ( ) 0
1p z p

K G z e
K→

= = ∞ ⇒ ∞ =
+

=  

For a ramp input, 
*

1

1 1lim( 1) ( ) 10          ( ) 0.1v z v
K z G z e

T K→
= − = ⇒ ∞ = =  

For a parabolic input, 
2 *

1

1 1lim( 1) ( ) 0          ( )a z a
K z G z e

T K→
= − = ⇒ ∞ = = ∞  

Notice that the results obtained are the same as the results obtained for the analog system.  
Since stability depends on the sampling rate we must check for the stability for a given 
sampling time T . 
 
Example 4.6 (chd4ex6.m) 
For the plant transfer function in Example 4.5 write a MATLAB program to evaluate the 
steady-state error for step, ramp, and parabolic inputs. Also check for system stability by 
finding the roots of the sampled-data closed-loop poles if sampling time is T  
second. 

0.1=

 
We use the following commands 
 

num = 10; 
den = [1  1  0]; 
Gp = tf(num, den)                                          % Plant transfer function 
T = 0.1;                                                          %  Sampling time 
[numz, denz] = c2dm(num, den, T, 'zoh');    % open-loop sampled-data num, den  
Gz = tf(numz, denz, 0.1)                   % Open-loop sampled-data transfer function    
Kp = ddcgain(numz, denz)                        % Calculate Kp 
e_ss_step = 1/(1+Kp) 
numzKv = (1/T)*conv([1  -1], numz);      % Multiply G(z) by (1/T)*(z-1) 
Kv = ddcgain(numzKv, denz)                   % Calculate Kv 
e_ss_ramp = 1/Kv 
numzKa = (1/T)^2*conv([1  -2  1], numz);    % Multiply G(z) by (1/T)^2*(z-1)^2 
Ka = ddcgain(numzKa, denz)                   % Calculate Kv 
if Ka == 0  
   e_ss = inf 

     else, e_ss_par = 1/Ka 
end 

 
% To determine if system is stable we find the sampled data close-loop poles 
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Tz = feedback(Gz, 1);              % Closed-loop sampled data transfer function 
[numT, denT]= tfdata(Tz, 'v');  %Returns the num, den of the closed-loop SDTF 
r = roots(denT);                         % Roots of the sampled-data char. Eq. 
rmag = abs(r)                             % Absolute value of the largest roots 

 
The result is 
 

Transfer function: 
 0.04837 z + 0.04679 
---------------------- 
z^2 - 1.905 z + 0.9048 

  
Sampling time: 0.1 
Kp = 

        Inf 
e_ss_step = 

         0 
Kv = 

        10.0 
e_ss_ramp = 

        0.10 
Ka = 

        0 
e_ss_par =   Inf 
 
rmag = 

       0.9755 
            0.9755 
Tee results are the same as the value found in Example 4.5. Also since the root 
magnitudes are less than 1, the digital control system with sampling rate 10 Hz is stable.  
 
 
 
Root Locus 
 
For the sampled-data system shown in Figure 4.10, the transfer function is  

( )( )
1 (
KG zG z
KGH z

=
+ )

 

( )C s

T

( )H s

−

( )R s ( )G z
( )C z

( )GH z

−

( )R z
( )G s

1( ) ( )
sT

p
eG s G s
s

−−
= ⇒

K K

 
 

Figure 4.10 Sampled data system 
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The root locus is a plot of the locus of the roots of the characteristic equation 
1 ( )KGH z+ 0= in the z-plane. Thus the rules for the root locus construction are the same 
as those for continuous-time systems except for a change in variable from s to z. 
Although the rules for root locus constructions are the same, the region of stability on the 
z-plane is within the unit circle. This corresponds to the left-half s-plane in the s-domain. 
The marginal stability in the z-plane is the intersection of the root-locus with the unit 
circle. In the last section we derived the curves for constant time constant τ , peak time 

and constant damping ratiopt ζ .  In order to design a digital system for transient 
response, we find the intersection of the root locus with the appropriate curves as they 
appear on the z-plane.  Review the rules for root-locus construction. These are 
summarized as follows: 
 
Summary of General Rules for Constructing Root-Loci 
 

1. Number of loci For  the number of loci, that is, the number of branches of 
the root-locus, is equal to the number of poles of the open-loop transfer function 

. The root-locus is symmetrical with respect to the real axis. 

n m>

( )GH z
 
2. Starting and ending points As is increased from zero to infinity, the loci of 

the closed-loop poles originate from the open-loop poles 
K

0K = , and proceed 
toward and terminate at the open-loop zeros, K = ∞ . Zeros tend to attract root-
loci toward them and poles tend to repel them. 

 
3. Root-locus segments on the real axis For , root-loci occurs on a particular 

segment of the real axis if and only if there are an odd number of total poles and 
zeros of the open-loop transfer function laying to the right of that segment. 

0K >

 
4. Unit circle intersection This will give the value of  for marginal stability. K
5. Asymptotes For most systems of interest,  is greater than or equal to . For 

 there are  zeros at infinity, thus for 
n m

n m> ( )n m− 0 K< < ∞  root-locus ends at 
zeros at infinity. Root-locus points are asymptotic to straight lines with angles 

given by 180 0,1,3,θ      r r
n m

= =
−

  

 
 Angle of Asymptotes 

n - m  Angle of Asymptotes 
0 No asymptote 
1 180  
2 90±  
3 180 , 60± ±  
4 45 , 135± ±  
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The asymptotes intersect the real axis at 
poles of ( ) zeros of ( )

a

GH z GH z
n m

σ
−

=
−

∑   

6. Breakaway and re-entry points These are points on the real axis where two or 
more branches of the root-locus depart from or arrive at the real axis. Breakaway 
points may be determined by expressing the characteristic equation for the gain 

as a function K z 1/ ( )K GH= − z , and then solving for the breakaway points z 
from 

( ) 0dK z
dz

=  

The real roots of this equation which satisfy rule 3 are the breakaway or re-entry 
points. 

 
In addition to the MATLAB control system toolbox rlocus(num, den) for root locus plot, 
MATALB control system toolbox contain the following functions which are useful for 
interactively finding the gain at certain pole locations and intersect with the unit circle on 
the z-plane. These are 
 
zgrid generates a grid over an existing discrete z-plane root locus or pole-zero map.  
Lines of constant damping factor ζ  and natural frequency nω  are drawn in within the 
unit Z-plane circle. zgrid(z, Wn) plots constant damping and frequency lines for the 
damping ratios in the vector z and the natural frequencies in the vector Wn. zgrid(0, 0) 
plots a unit circle. 
 
[K, poles] = rlocfind(num, den)  puts up a crosshair cursor in the graphics window 
which is used to select a pole location on an existing root locus.  The root locus gain 
associated with this point is returned in K and all the system poles for this gain are 
returned in poles.   
 
Example 4.7 (chd4ex7.m) 
 
Sketch the root locus for the system shown in Figure 4.11. Also, determine the range of 

, for stability from the root locus plot. Sampling time is 0.1 seconds.  K
 

( )C z

−

( )R z ( 1)
( 1)( 0.5)
K z

z z
+

− −

 
Figure 4.11 Digital feedback control for Example 4.7 

 
We use the following commands numz = [1  1]; 
 

denz = [1  -1.5  0.5]; 
Gz = tf(numz, denz, 1)                 % Plant transfer function 
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rlocus(numz, denz),                     % Plot root locus 
zgrid(0, 0)                                    % Add unit circle to root locus 
[K, p] = rlocfind(numz, denz)      % Puts a crosshair on the plot, when clicked at a 
                                                     % desired location gain K and poles are returned. 

 

 
Figure 4.12 Root locus for Example 4.7 with unit circle 0ζ =  

 
Transfer function: 
      z + 1 
----------------- 
z^2 - 1.5 z + 0.5 
  
Sampling time: 0.1 
Select a point in the graphics window 
 
Selected point = 

                                       0.4954 + 0.8646i 
             k = 
                    0.50 
             p = 
                    0.4999 + 0.866i 

        0.4999 - 0.866i 
 
We find the intersection of the root locus with the unit circle at 1 6 . The gain at this 
point as given by MATLAB is 0.5. Hence the system is stable for 

0∠
0 0.5K< < . Given the 

root locus and intersection with the unit circle the gain  to have the closed loop poles at 
this location is given by  

k
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products of vector length from poles
producta of vector length from zeros

k =  

or 
(0.866)(1) 0.5

1.732
k = =  

 
 
Digital Control System Design  
 
The purpose here is to design a digital controller that will produce a response in 
accordance with the design specifications. We consider a cascade controller has shown in 
Figure 4.13. 

( )D z

1 Tse
s

−− ( )C s
( )D z

−

( )R s
T

ZOH Plant

( )pG s
( )C z( )E z( )E s

 
Figure 4.13 Sampled data control system with cascade controller 

 
In the previous section we analyzed digital systems in the z-domain and covered the gain 
compensation design directly in the z-domain. All of the controllers we studied in EE370 
were described by the Laplace transform or differential equations, which are built using 
analog components. As stated earlier most control systems today use digital computers to 
implement the controllers. We are now ready to look at the design of various controllers 
for the sampled data systems that will be implemented in a digital computer. The 
implementation leads to a small delay (about half the sample period) and aliasing, which 
need to be addressed in the controller design.  
 
There are several approaches to designing digital controller. One method is called the 
direct design where the desired closed loop transfer function is specified. All the direct 
design methods tend to produce intersample oscillations, referred to as ringing, which we 
will not consider. A second approach is using root locus design directly in the z-plane or 
frequency response design in the z-plane that will be considered next.  
Finally another approach for the digital controller design is to design the controller in the 
s-plane and then map the compensator to the z-plane using the inverse bilinear mapping. 
This method is most appealing to the practicing control system designers since they are 
familiar with the continuous-time control system design. The last approaches lead to a 
reasonably good digital controller provided the sampling frequency is large enough. 
Typically for the second-order system a sampling rate of 20 times the damped frequency 
of oscillation yields very good results.  
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Root locus design in the z-plane 
 
This approach requires that we find the pulse transfer function , the procedure is 
illustrated in the following example. 

( )G z

 
Proportional Controller 
 
In this section we start with the design of a proportional controller with ( ) PD z K= . In 
general as the proportional gain PK  is increased, the step response rise time and the 
steady state error decreases.  

rt

 
Example 4.8 (chd4ex8.m) 
 
Using MATALB obtain the root locus for the system in Example 4.7 and determine the 
value of , for a step response damping ratio of 0.707. For this value of  obtain the 
closed-loop sampled-data transfer function and the step response.  Sampling time is 0.1 
seconds.  

K K

 
We use the following commands 

numz = [1  1]; 
denz = [1  -1.5  0.5]; 
zeta = input('Enter the desired damping ratio '); 
Gz = tf(numz, denz, 0.1)              % Plant transfer function 
figure(1), rlocus(numz, denz),   % Plot root locus 
zgrid(zeta ,1)                              % Add unit circle to root locus 
[K, p] = rlocfind(numz, denz)    % Puts a crosshair, when clicked at a location 
                                                   %  Gain K and poles are returned 
Tz = feedback(K*Gz, 1)            % Closed-loop sampled data transfer function 
[numT, denT] = tfdata(Tz, 'v');  % Returns the num and den of the closed-loop TF 
figure(2), ltiview('step', Tz)       % Step response 

 
The result is 
Enter the desired damping ratio 0.707 

  
Transfer function: 
       z + 1 

----------------- 
z^2 - 1.5 z + 0.5 

  Sampling time: 1 
Select a point in the graphics window 
Selected point =  
                           0.7191 + 0.2209i 

K = 
0.0642 

p = 
  0.7179 + 0.2208i 
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  0.7179 - 0.2208i 
Transfer function: 

   0.06416 z + 0.06416 
---------------------- 
z^2 - 1.436 z + 0.5642 

  
The plots are shown in Figures 3.14and 3.15. 

 
Figure 4.14 Root-locus for Example 4.7 with constant 0.707ζ = curve. 

 
Figure 4.15 Sampled step response for Example 4.7 with unit circle 0ζ = . 
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Digital PID Controller 
 
Generally proportional controller alone cannot result in good damping and fast response 
and may have unacceptable steady-state error. Introducing an integral term in the 
controller can eliminate steady-state errors but may adversely affect the transient 
response. A term proportional to the derivative of the error can improve the transient 
behavior but does not reduce the steady-state error. A controller that combines all the tree 
terms, known as the PID controller can be used to improve both the transient behavior 
and the steady-state response.  
 
Example 4.9 
 
For the feedback control system shown in Figure 4.16 the plant transfer function and the 
sensor are 

8( )
( 2)( 8pG s
s s

=
+ + )

 and  20( )
20

H s
s

=
+

 

 
( )C s

T

( )H s

−

( )R s ( )G z
( )C z

( )GH z

−

( )R z
( )G s

1( ) ( )
sT

p
eG s G s
s

−−
= ⇒

K K

 
 

Figure 4.16 Sampled-data system with phase proportional controller 
 
The sampling time is 0.1 second. Using MATLAB 

(a) Find the discrete-time transfer function of the process and the sensor 
(b) Draw the root locus in the z-plane 
(c) Use  rlocfind command to find the gain  for which the closed loop system 

becomes unstable.   
K

(d) Design a proportional controller and find  for the step response dominant 
complex conjugate poles to have a damping ratio of 0.8.  

K

(e) For the value of  found in (d) determine the step response.  K
 
We use the following commands 
 
numGp = [0 0 8]; 
denGp = conv([1 2],[1,8]); 
Gp = tf(numGp, denGp);             % plant transfer function 
numH = [0 20]; 
denH = [1 20]; 
H = tf(numH, denH);                  % plant transfer function 
HGp = H*Gp;                             % Continuous open loop TF 
T = 0.1;                                       % Sampling time 
G = c2d(Gp, T, 'zoh')                 % Sampled-data plant TF 
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HG = c2d(HGp, T, 'zoh')            % Sampled-data open loop TF 
figure(1), rlocus(HG)              % Plot root locus 
zeta = 0.707 
zgrid(zeta, 1)                           % Add unit circle and zline to root locus 
[Kc, pc] = rlocfind(HG)          % Puts a crosshair, when clicked at a location gain K  
                                                % and poles are returned 
[K, p] = rlocfind(HG)              % Find K for zeta = 0.707 
Tz = K*G/(1 + HG*K)                % Closed-loop sampled data transfer function 
figure(2), ltiview('step', Tz)     % Step response 
 
The result is 
 
Transfer function: 

 0.02907 z + 0.02084 
---------------------- 
z^2 - 1.268 z + 0.3679 
  
Sampling time: 0.1 
  
Transfer function: 
 0.01333 z^2 + 0.02682 z + 0.002997 
------------------------------------ 
z^3 - 1.403 z^2 + 0.5395 z - 0.04979 
  
Sampling time: 0.1 
 
zeta = 
            0.7070 

            Select a point in the graphics window 
 
selected_point = 

                                        0.5879 + 0.8115i 
Kc = 
          17.2306 

            pc = 
                    0.5877 + 0.8114i 

        0.5877 - 0.8114i 
       -0.0019           

           Select a point in the graphics window 
 
selected_point = 

                                       0.6434 + 0.2531i 
K = 

                     2.0424 
p = 

                    0.6423 + 0.2531i 
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       0.6423 - 0.2531i  
0.0916           

 
            Transfer function: 
  
            0.05937 z^4 - 0.04075 z^3 - 0.02771 z^2 + 0.02001 z - 0.002119 
 -------------------------------------------------------------- 
  z^5 - 2.644 z^4 + 2.707 z^3 - 1.304 z^2 + 0.274 z - 0.01606 
  
 Sampling time: 0.1 
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Figure 4.17 Root locus and step response for Example 4.9 

 
Example 4.10 
 
For the digital control system shown design a cascade discrete controller that meets the 
following time-domain specifications 
 

• The step response damping ratio of 0.707ζ =  
• The step response time constant 0.5 seconds 

 

1 Tse
s

−− ( )C s
( )D z

−

( )R s 1
( 2)s s +

Sampler Hold Plant
( )c o

o

K z z
z p

−
−

 
 

Figure 4.18 Sampled-data system with phase lead controller 
 

The plant transfer function of a system is given by 
1( )

( 2
G s

s s
=

+ )
 

First we find the desired location of the closed loop poles. 
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θ
nζω−

1s

2s -planes1

10.5                2

0.707 cos         45
Therefore

2 2

n
n

s j

τ ζω
ζω

ζ θ θ

= = ⇒ =

= = ⇒ =

= − +

 
Figure 4.19 

 
The desired closed loop poles in the z-plane is 
 

0.2 0.2 0.8024 +j 0.1627jTsz e e− += = =  
The pulse transfer function is 

2 2
1 1 0.5 0.25 0.25( ) (1 )

1 2( 2)

Ts
TseG s e

s ss s s

−
−− − = = − + + ++  

 

The z-transform is then 

2 2

2

1 0.5 0.25 0.25 0.05 0.25( 1)( ) 0.25
1 1 0.81873( 1)

0.004683( 0.9355) 0.004683 0.004381       
( 1)( 0.81873) ( 1.81873 0.81873)

T
z Tz z z zG z
z z z zz z e

z z
z z z

−

 − − = + + = − +   − − −− −   
+ +

= =
− − − +

−

 

Consider the controller  
0

0

( )( ) cK z zD z
z p

−
=

−
 

In this design we use pole cancellation, i.e., we select the controller zero equal to 0.81873 
and choose the controller pole to satisfy the design specifications. Therefore the 
controller is 

0

( 0.81873)( ) cK zD z
z p
−

=
−

 

 
Applying the angle criterion to the root locus in z-plane as shown in Figure 4.16. 

0p
θ 140.538

1z

×
0.8024

0.1626

1-0.9355
5.349

0

0.255931.745 0.2308

 

× x

 

180zi piθ θ− = −∑ ∑  
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Therefore 
5.349 ( 140.538) 180        44.81po poθ θ− + = − ⇒ =  

0.1626tan 44.81 0.16374x
x

= ⇒ =  

0.8024 0.16374 0.6387op = − =  
0.004683 ( 0.9348)( ) ( )

( 1)( 0.6387)
c

p
K zD z G z

z z
+

==
− −

 

Applying the magnitude criterion 
(0.2559)(0.2308)0.004683         7.227

1.745c cK K= ⇒ =  

Therefore the controller is  
 

7.227( 0.81873)( )
0.6387
zD z

z
−

=
−

 

The compensated open loop transfer function is 
 

2

0.03384( 0.9355) 0.03384 0.03166)( ) ( )
( 1)( 0.6387) ( 1.639 0.6387)p

z zD z G z
z z z z

+ +
= =

− − − +
 

The compensated closed loop transfer function is 

2

( ) ( ) 0.03384 0.03166)( )
1 ( ) ( ) ( 1.605 0.6703)
D z G z zT s
D z G z z z

+
= =

+ − +
 

 
The following MATLAB commands are used to obtain the controller transfer function, 
the closed loop pulse transfer function and the step response of the compensated system. 
 
numGp=[0 1]; 
denGp=[1 2 0]; 
Gp=tf(numGp, denGp) 
T = input('Enter the sampling time in sec ');                       % Sampling time 
Gz = c2d(Gp, T, 'zoh')               % open-loop sampled-data transfer function  
[numGz,denGz]=tfdata(Gz, 'v');                % Returns the num and den of Gz 
rn=roots(numGz)                                                                       % zeros of Gz 
rd=roots(denGz)                                                                         % poles of Gz 
s1 = -2 +j*2;                   %desired location of the closed loop pole in s-plane  
z1 = exp(T*s1);              %desired location of the closed loop pole in z-plane 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                                 % The following commands evaluates the vector length  
                          % from poles and zeros, their angles, controller pole, and Kc 
                                                                                % Using graphical method 
zh=-rn+real(z1); zv=imag(z1); 
Mz=sqrt(zh^2+zv^2); thetaz=atan(zv/zh);   %Vector length and angle to zero 
ph=rd(1)-real(z1); pv=imag(z1); 
Mp=sqrt(ph^2+pv^2);thetap=pi-atan(pv/ph);%Vector length and angle to zero 
thetapo=pi+thetaz-thetap;                      % Angle of po applying angle criteria 
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x=pv/tan(thetapo);  po=real(z1)-x 
Mpo=sqrt(x^2+pv^2); 
Kc=Mp*Mpo/(Mz*numGz(2))                   % Kc applying magnitude criteria 
numD=Kc*[1 -rd(2)]; 
denD=[1  -po]; 
D=tf(numD, denD, T)                                       % Controller transfer function 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
DGz=D*Gz;                                                     % Open loop transfer function 
DG=minreal(DGz)                                % eliminate duplicate poles and zeros 
Tz=feedback(DG, 1)                                      % Closed loop transfer function 
ltiview('step', Tz) 
 
The response meets the design specification and the result is in close agreement with the 
response of the analog system. 
 

 
Figure 4.20 Step response for Example 4.10 

 
 
PID Controller 
As we have seen proportional controller PK can be used to improve the steady-state error. 
As PK  is increased the steady state error is reduced, however, the step response overshoot 
will increase and for characteristic equation higher than the second order it may cause 
system to become unstable. In the case of continuous-time control system if we desire to 
eliminate the steady state error to zero we use an integrator that is we introduce a pole at 
origin. For example a system type zero has a steady state error with a unit step input. 
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Introducing an integral controller will reduces the steady state error to zero. The Transfer 
function of a PI controller is 

( ) I
c P

KG s K
s

= +  

This can be written as 

0

( )
( )( )

I
P

PP
c

KK s
K s zKG s

s s

+
−

= =  

That is in addition to a pole at origin; the PI controller introduces a zero at 0
I

P

Kz
K

= −  

Similarly a PI controller in the z-domain can be considered to introduce a zero and a pole 
at . 1z =

0

( )
( )( )

1 1

I
P

PP

KK z
K z zKD z

z z

+
−

= =
− −

 

While the PI controller reduces the steady-state error to zero, it has destabilization effect 
because of the addition of poles at origin in the s-plane or at 1z = in the z-plane. In order 
to improve the transient characteristics a derivative controller is also added. In the s-
domain the PD controller transfer function is 
 

0( ) ( ) ( )P
c P D D D

D

KG s K K s K s K s z
K

= + = + = −  

That is the controller introduces a zero at 0
P

D

Kz
K

= −  

Similarly a digital PD controller introduces a zero in the z-plane. 
  
Example 4.11 
 
For the digital control system shown design a PI controller that meets the following time-
domain specifications 
 

• The step response dominant complex closed loop poles damping ratio of 
0.707ζ =  

• The step response dominant complex closed loop poles time constant 1 second. 
 

1 Tse
s

−− ( )C s
( )D z

−

( )R s 1
( 1)( 4)s s+ +

Sampler Hold Plant
( )

1
P oK z z
z
−
−

 
Figure 4.21Sampled-data system with a PI controller 
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Sampling time is 0.1 second.  
 

The plant transfer function of a system is given by 
1( )

( 1)( 4
G s

s s
=

+ + )
 

First we find the desired location of the closed loop poles. 

θ
nζω−

1s

2s -planes1

11                1

0.707 cos         45
Therefore

1 1

n
n

s j

τ ζω
ζω

ζ θ θ

= = ⇒ =

= = ⇒ =

= − +

 
Figure 4.22 

 
The desired closed loop poles in the z-plane is 
 

0.1 0.1 0.90032  0.090333jTsz e e j− += = = +  
The pulse transfer function is 

1 1 0.25 1/ 3 1/12( ) (1 )
1 ( 1)( 4) 1 4

Ts
TseG s e

s s s s s s

−
−− − − = = − + + + + + + 

 

The z-transform is then 

4

2

1 0.25 1/ 3 1/12( )
1

0.004248( 0.84655) 0.004248 0.003596       
( 0.90484 )( 0.67032) ( 1.575 0.6065)

T T
zG z
z z z e z e

z z
z z z

− −
− − −   = + +   − − −   

+ +
= =

− − − +

 

Consider the controller  
0( )( )

1
PK z zD z
z
−

=
−

 

The controller introduces a pole at 1z = . The controller zero is found by applying the 
angle criterion as shown in Figure 4.326. 

0z
θ 0.1345 137.82∠

×
0.6703

0.09033

1-0.84655

1.7492 2.96∠

0 x
×

0.8712
0.90484

1z
0.09044 92.865∠0.2471 21.443∠

 

×o

Figure 4.23 
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180zi piθ θ− = −∑ ∑  

Therefore 
2.96 (21.443 92.865 137.82) 180        69.164zo zoθ θ+ − + + = − ⇒ =  

0.09033tan 69.164 0.034379x
x

= ⇒ =  

0.90032 0.034379 0.866oz = − =  
0.004248 ( 0.84655)( ) ( )

( 0.90484)( 0.67032)( 1)
P

p
K zD z G z

z z z
+

==
− − −

 

Applying the magnitude criterion 
(1.7492)(0.096654)0.004248         4.2

(0.09044)(0.2471)(0.1345)P PK K= ⇒ =  

Therefore the controller is  
 

4.2( 0.866)( )
1

zD z
z
−

=
−

 

The compensated open loop transfer function is 
 

2

3 2

0.01778 0.0003447 0.01304( ) ( )
- 2.575   2.182 - 0.6065p

z zD z G z
z z z

− −
=

+
 

The compensated closed loop transfer function is 
2

3 2

( ) ( ) 0.01778 0.0003447 0.01304( )
1 ( ) ( ) 2.557 2.181 0.6196
D z G z z zT s
D z G z z z z

− −
= =

+ − + −
 

Roots of the z-domain characteristic equation are 
 r = 
  0.9003 + 0.0903i 
    0.9003 - 0.0903i 
    0.7567           
The step response is as shown in Figure 4.24. 
From , the s-plane roots are given by Tsz e= ln( ) /s z T= , or 
 s = 
 -1.0000 + 1.0000i 
 -1.0000 - 1.0000i 
 -2.7873     
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Figure 4.24 Step response for system in Example 4.11. 

 
Root locus design in the s-plane 
 
One method for determining the digital controller is to ignore the sampler and 
obtain the analog controller G  using the techniques for the continuous-time control 
system. The controller is then converted to  using the inverse bilinear 
transformation. The inverse bilinear transformation  

( )D z
( )c s

( )D z

 
2

1
zs

T z
−

=
+

1         (4.21) 

 
preserves the frequency response and root locus and the stability property of the closed 
loop system. This way the stable poles in the s domain maps into stable poles in the z-
domain. The design for system in Example 4.9 is obtained in s-plane is illustrated in  
 
Example 4.12 
 
Design the digital controller for Example 4.10 using root locus design in s-plane. We 
consider the design of the controller G  ( )c s
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Figure 4.25 Continuous-time control system with phase lead controller 

For the design specification given in Example 4.10 ( 0.707ζ = , 0.5τ =  second), the 
desired close loop pole location is 
  1 2 2s j= − +
Using the pole cancellation, for the controller 2oz = .  
 

0p
θ 135

8

×
-2 0-4×

8

2j

op−

1s

 
Figure 4.26 

Applying the angle criterion 

180zi piθ θ− = −∑ ∑  

Therefore 
0 ( 135) 180        45po poθ θ− + = − ⇒ =  

2tan 45 2x
x

= ⇒ =  

2 2 4op− = − − = −  
( 2( ) ( )

( 4)
c

c p
K sG z G z
s

+
==

+
)  

Applying the magnitude criterion 
8 8       8c cK K= ⇒ =  

Therefore the controller is  
 

8( 2)( )
4c

sG s
s
+

=
+

 

We can now map the compensator G  to the z-plane using the inverse bilinear 
transformation 

( )c s
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or 
7.33( 0.818)( )

( 0.667)
zD z

z
−

=
−

 
The z-domain design 7.33( 0.818)   ( )
was found to be        ( 0.667)

zD z
z

−
=

−
 

 
This is approximately the same controller as the one designed in the z-domain for 
Example 4.10. For sampling time less than T 0.1=  second the design in s-plane will be 
remarkably accurate. It is therefore convenient to carry out the design in the s-plane and 
then convert to a digital filter. In the following section we shall review the root locus 
design for various controllers by means of several examples 
 
MATLAB has a very useful command for inverse bilinear transformation from s-plane 
into the z-plane.  
 
[numz, denz ] = bilinear(num, den fs) converts the s-domain transfer function to a z-
transform discrete equivalent obtained from the bilinear transformation defined in (4.21) 
Where sf  is the sample frequency in Hz. The above function can be used when the s-
domain transfer function is expressed in terms of zeros and poles, or when the s-domain 
system is modeled in state variable representation.  
        
 
Example 4.13 
Convert the controller G  in Example 4.12 to the digital controller using the bilinear 
function. The sampling time is 0.1 second, i.e., 

( )c s
1/ 0.1 10sf = = Hz. 

 
We use the following commands  
 fs=10; 

num=8*[1  2]; 
den=[1  4]; 
[numz, denz]=bilinear(num, den, fs) 
Gz=tf(numz, denz, 0.1) 

 
The result is 
 

Transfer function: 
7.333 z - 6 
----------- 
z - 0.6667 
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Example 4.14 
 
Design the digital controller for Example 4.11 using root locus design in s-plane. We 
consider the design of the controller G  ( )c s

( )C s
( )cG s

−

( )R s 1
( 1)( 4)s s+ +

Plant

I
P
KK
s

+

 
Figure 4.25 Continuous-time control system with phase lead controller 

 

0

( )
( )( )

I
P

PI P
c P P

KK s
K s zK KG s K K

s s

+
+

= + = =
s

 

For the design specification given in Example 4.10 ( 0.707ζ = , 0.5τ =  second), the 
desired close loop pole location is 
  1 1 1s j= − +
Applying angle criterion  

0z
θ

135

2

-1 0-4×

10 1j

op−

1s

×
1.2518.435

 

×o
0z

Figure 4.26 
Applying the angle criterion 

180zi piθ θ− = −∑ ∑  

Therefore 
(135 18.435 90) 180        63.435zo zoθ θ− + + = − ⇒ =  

1tan 63.435 0.5x
x

= ⇒ =  

1 0.5 1.5oz− = − − = −  
( 1.5)( ) ( )

( 1)( 4
P

c p
K sG z G z
s s s

+
==

+ + )
 

Applying the magnitude criterion 
2  (1) 10        4

1.25P PK K= ⇒ =  
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Therefore the controller is  
 

4( 1.5) 6( ) 4c
sG s
s s
+

= = +  

We can now map the compensator G  to the z-plane using the inverse bilinear 
transformation 

( )c s

( )
120
1

0.3 16 4( ) 4 4
1 1zs

z

z zD z
s z−

=
+

+ − = + = + =  − − 
.3 3.7
z

 

or 
4.3( 0.8605)( )

1
zD z
z
−

=
−

 
The z-domain design 4.2( 0.866)   ( )
was found to be        ( 1)

zD z
z
−

=
−

 

 
This is approximately the same controller as the one designed in the z-domain for 
Example 4.11.  
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I have developed a GUI program for the controller design in the s-plane. To use this 
program at the MATLAB prompt type 
 
>> rldesigngui 
 
Define the plant transfer function and select the desired controller 
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Homework  
In the following problems you may design the controller in the s-domain and use the 
bilinear transformation to obtain the digital controller 
 
1. For the control system shown, design a PD controller for the step response dominant 
poles to have a damping ratio of 0.707ζ = and a time constant of 0.5sec.τ =  

1 Tse
s

−− ( )C s
( )G z

−

( )R s 1
( 2)s s +

Sampler Hold Plant

( )D oK z z−

0
P

D

Kz
K

=
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2. The open loop transfer function of a plant is  
1( )

( 1)( 4PG s
s s

=
)+ +

 

Design a PD controller G s  for the step response to meet the following 
specifications: Use the bilinear transformation to find the digital controller 

( )c PK sK= + D

• Damping ratio of the complex conjugate poles 0.8ζ =  
• Time constant of the complex conjugate poles 0.25τ =  second 
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3. For the control system shown, design a phase lead controller for the step response 
dominant poles to have a damping ratio of 0.707ζ = and a time constant of 0.5sec.τ =  
Use the bilinear transformation to find the digital controller 
 

1 Tse
s

−− ( )C s
( )D z

−

( )R s 1
( 2)s s +

Sampler Hold Plant

0

( )c oK z z
z p

−
−

 
 

 
In s-domain select the controller zero at 0 3Z− = −  
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4. For the control system in Example 7, design a phase lag controller for the following 
specifications: 
1. The step response dominant poles to have a damping ratio of 0.707ζ =  
2. Steady-state error due to a unit ramp input e 0.01ss =  

1 Tse
s

−− ( )C s
( )D z

−

( )R s 1
( 2)s s +

Sampler Hold Plant

0

( )c oK z z
z p

−
−

 

 
Obtain the compensated open loop transfer function. 
 
Check your s-domain design using the rldesigngui program 
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