
CHAPTER 2 
 

 
DIGITAL CONTROL SYSTEMS 
 
Introduction 
 
Digital control of a continuous-time system has become very popular as the price and 
reliability of digital computers has greatly improved. Analog controllers are replaced by 
digital computer that performs calculations, which emulate the physical controllers. Very 
complicated control structures can be implemented easily using a digital controller, 
whereas an analog controller would require very complex hardware. Digital control offers 
important advantages in flexibility of modifying controller characteristics by changing 
the program if the design requirement changes or plant dynamic changes with the 
operating conditions. Furthermore, analog emulation and real-time control provides 
advanced features such as adaptive self-tuning, multivariable control, expert systems, and 
the ability to communicate over local area network.  
 
A digital computer may be used to serve as a controller as well as a supervisory. Analog 
controllers are replaced by digital computer that performs calculations that emulate the 
physical controllers 
 
Advantages of Digital Control Systems 
 
The use of digital computers in the loop has the following advantages: 

• Reduced cost 
• Flexibility in response to design changes with many controlled variables 
• Noise Immunity 
• Ability to communicate over local area network.  
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Figure 2.1(a) Continuous system block diagram 
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Figure 2.1(a) shows the block diagram of the typical continuous system. The computation 
of the error signal and the dynamic compensation G  can all be accomplished in a 
digital computer as shown in Figure 2.1(b). Typically, the computer replaces the cascade 
controller as shown in Figure 2.1(a). The measurements data are converted from analog 
form to digital by means of the analog-to-digital converter A/D). The digital computer 
receives and performs the required compensation on the signal in digital form 
(numerical). The computer output is then converted to analog form by the digital-to-
analog converter (D/A). A block diagram representation of a digital control system is 
shown in Figure 2.1(b) 

( )e t ( )c s

 

/D A
−

( )r t
Digital computer

( )e t ( )e kT
/A D Plant

( )c t

Sensor

( )m kT
Interface Interface

 
Figure 2.1(b) Digital control system block diagram. 

 
Digital-to-Analog Conversion 
 
D/A converter is a device that converts the sampled signal  to a continuous signal 

. The weighted voltages are summed together to produce the analog output. 
(m kT )

n

( )m t
 
Analog-to-digital Conversion 
 
In the analog-to-digital converter, the analog signal is first converted to a sampled signal 
and then converted to a sequence of binary numbers, the digital signal. The sampling rate 
must be at least twice the bandwidth of the signal, or else there will be distortion. The 
minimum sampling frequency is known as the Nyquist sampling rate.  
 
The output of the A/D converter is described by a number sequence 

, designated by e k . Often for simplicity, is omitted, and the 
notation becomes e k . Assuming computer has negligible computational time, an input 

 at time , results in an output, which may be expressed by 

(0),  ( ),  (2 ),  e e T e T "
( )

(0)e 0t =

( )T k

0(0) (0)m b e=          (2.1) 
If  is constant, the above equation is linear, time-invariant relation. Depending on the 
compensation function , may be 
expressed as  

0b
( ),  (2 ),  ,  ( ),  or (1),  (2),  ,  ( )m T m T m kT m m m k" "

 
0 1 1( ) ( ) ( 1) ( ) ( 1) ( )nm k b e k b e k b e k n a m k a m k n= + − + + − − − − − −" "   (2.2) 
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This is called a difference equation. Just as differential equations are used to represent 
systems with analog signals, difference equations are used for system with discrete data. 
Difference equations are also used to approximate differential equations.  
 
The z-transform 
 
The z-transform is an operational method for solving the difference equation of a discrete 
linear system. The z-transform plays the same role for discrete-time signals as does the 
Laplace transform for continuous-time signals. The simplest model for the sampling of 
the A/D converter is a switch, which repeatedly closes for every short duration τ  after 
every T seconds. The output of such a switch would consist of series of pulses separated 
by seconds. If T τ is very small the output can be represented by a series of time-shifted 
impulses. As we see in the next chapter an ideal model of a sampled signal can be 
presented by 

*( ) ( ) ( )
k

k
x t x t tδ

=∞

=−∞

= ∑ kT−

)

       (2.1) 

Since (t kTδ −  is zero except at the sampling instant t kT= , ( )x t can be replaced by 
( )x kT . Also assuming  for ( ) 0x t = 0t < , the above equation is written as 

*

0
( ) ( ) ( )

k

k
x t x kT t kδ

=∞

=

= ∑ T−        (2.2) 

Taking the Laplace transform yields 
*

0
0

( ) ( ) ( )
k

st

k
X s x kT t kT eδ

=∞∞ −

=

= −∑∫ dt        

Interchanging integral and summation results in 
*

0
0

( ) ( ) ( )
k

st

k
X s x kT t kT eδ

=∞ ∞ −

=

= −∑ ∫ dt  

From the sifting property of the δ function, the above relation reduces to 
*

0
( ) ( )

k
skT

k
X s x kT e

=∞
−

=

= ∑  

Now, defining the complex variable  as z
sTz e=          (2.3) 

we get 

0
( ) { ( )} ( )

k
k

k
X z x kT x kT z

=∞
−

=

= = ∑Z       (2.4) 

( )X z  is known as the z transform of the sequence of samples, ( )x kT . 
Often T  is omitted and the notation becomes 

-( ) { ( )} ( )                    0,  1,  2,  

0

k kX z x k x k z k

k

=∞
= = =∑

=

"Z      

 
The above equation defines the z-transform, and we write 
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( ) ( )x k X→← z

)

        (2.5) 
 
In (2.4) the coefficient (x kT , denotes the sample value, and kz−  denotes that the sample 
occurs sample periods after the tk 0= reference. Comparing with (2.3), we see that the 
parameter kz− is simply shorthand notation for the Laplace time shift operator skTe− . As 
an example, denotes a sample, having value 20.5, which occurs 12 sample 
periods after t  reference. 

1220.5z−
0=

 
The Laplace variable  is given by,s s jσ ω= + and (2.3) can be written as 

T j Tz e eσ ω=  
so that the magnitude of is given by z
 | | Tz eσ=  
Thus, the right-half s-plane, 0σ > , corresponds to 1z > , while the left-half s-plane, 

0σ < , corresponds to . We see that the left-half s-plane maps into the interior of the 
unit circle in the z-plane and that the right-half s-plane maps outside the unit circle in the 
z-plane. The mapping of the Laplace variable into the z-plane through 

1z <

s sTz e= is 
illustrated in Figure 2.1.  
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Figure 2.1 Mapping variable  into z-plane s

 
Recall that the s-domain transfer function with poles in the left-half-s-plane resulted a 
time domain response that decayed to zero as . In a similar manner function of t →∞
z having poles with magnitude less than one decay to zero in the time domain as . 
Poles on the 

k →∞
jω axis in the s-plane corresponds to poles on the unit circle in the z-plane, 

and imply time-domain functions that oscillates, i.e marginally stable.  An unstable 
system would have poles in the right-half s-plane, this corresponds to z-domain function 

with poles outside the unit circle. A function having pole at origin, i.e., 1
s

 is a unit step in 

the time-domain, and as we see a function having a pole in the z-plane at  
corresponds to a sampled unit step in the time-domain. This is not surprising since 

corresponds to 

1z =

0=s 1z = . 
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The following Examples illustrate the derivation of the z-transform 
 
Example 2.1 
 
Find the z-transform of the discrete delta function 
 

( ) ( )x kT kδ=
Unit Impulse

0 1 3 42 k

1          0
( ) ( )        

0    otherwise
k

x kT kTδ
=

= = 


1

 
••••

{ ( )}=    1Z- 0

0
( ) { ( )} ( )  1          

k
k

k
X z Z kT TkT z z kδ δ δ

=∞

=

= = = = ⇒∑  

 
Recall that the Laplace transform of ( )tδ  is also 1. Thus the discrete delta function, like 
its continuous counterpart, represents the instantaneous injection of energy into a system. 
 
 
Example 2.2 
 
Find the z-transform of the discrete unit step function 
 

( ) ( )x kT u kT=
Unit step

0 1 3 42 k

1
 ( ) ( )        0,  1,  2,x kT u kT k= = "

 
- - -1 -2 -3

0 0
( ) ( )  1       

k k
k k

k k
X z u kT z z z z z

=∞ =∞

= =

= = = + + + +∑ ∑ "  

 
The following infinite geometric series in closed form is  
 

1 2 3
1

11
11

zz z z
zz

− − −
−+ + + + = =

−−
"  

That is,  
  

-k
-1

0

1 zz  =      
z-11-z

k

k

=∞

=

=∑        (2.5) 

 
Therefore 
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 ( ) { ( )}
1

zX z u t
z

= =
−

Z

1
1( ) { }

1 ( )
aKT

aT aT
zX z e

ze z e
−

− −− −
Z

1
1( )

1
k zc

z ccz−
= =

−−
Z

2

( cos )( )
2 cos 1

z z TX z
z z T

ω
ω

−
=

− +

 
Example 2.3 
 
Find the z-transform of the discrete exponential function  
 

( ) akTx kT e−=
Unit exponential

0 1 3 42 k

1
 ( )         0,  1,  2,akTx kT e k−= = "

 
 

{ } ( )
0 0

( )
k k kakT akT k aT

k k
X z e e z ze

=∞ =∞ −− − −

= =

= = =∑ ∑Z   

 
Form (2.8), we conclude that 
 

 = = =

 
aTe−  is constant, letting , gives the z-transform pair aTc e−=

 

   

 
which shows that ( )X z  has a zero at 0z =  and a pole at z c= . Thus, only for | | , the 
response is bounded. 

1c <

 
Example 2.4 
 
Find the z-transform of the discrete sinusoidal function ( ) cosx t tω= for t  0>
 

cos      or    cos
2 2

j t j t j kT j ke e e et kT
ω ω ω ω

ω ω
− −+ +

= =
T

 

2

1 1 (( )
2 2

j T j T

j T j T j T j T

z z z z e z eX z
z e z e z ze ze

ω ω

ω ω ω ω

−

− −

− + − = + = − − − − 
)
1+

 

 
or  
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The z-transform for typical discrete function along with the corresponding Laplace 
transform for continuous function is given in table 2.1. 
 
Table 2.1 
______________________________________________________________________ 

( )x t    ( )X s                         ( )x kT                              ( )X z  
______________________________________________________________________ 

( )tδ    1        ( )kTδ          1 

( )u t    1
s

        u k             ( )T
1

z
z −

 

t              2

1
s

           kT           2( 1)
Tz

z −
 

2t    3

2
s

        (                             2)kT
2

3

( 1
( 1)

T z z
z

+
−

)  

ate−            1
s a+

      e e( )kaT aT k c− −= =         aTe
z

z − =
−

 k

z
z

c−
atte−                          2

1
( )s a+

                                              kaTkTe−
2( )

aT

aT

Tze
z e

−

−−
 

sin tω           2 2s
ω
ω+

        sin kTω               2

sin
2 cos 1
z T

z z T
ω
ω− +

 

cos tω                     2

s
s 2ω+

       cos kTω                 2

( cos )
2 1

z z T
z zco T

ω
ω

−
− +

 

sinate tω−     2 2( )s a
ω

ω+ +
    e           sinaT ω− kT 2 2

sin
2 cos

aT

aT aT

ze T
z ze T e

ω
ω

−

− −− +
 

cosate tω−     2( )
s a

s a 2ω
+

+ +
                        cosaTe ω− kT

2

2 2

cos
2 cos

aT

aT aT

z ze T
z ze T e

ω
ω

−

− −

−
− +

 

 
 
Initial and Final value theorems  
 
The initial and final value theorems are useful for providing partial check on the time-
domain response without having to compute the inverse z-transform. The initial value 
theorem states that  
 

(0) lim ( )
z

x X z
→∞

=         (2.6) 

 
This is easily verified. By definition 
 

0 1
( ) ( ) (0) ( )k k

k k
X z x kT z x x kT z

∞ ∞
− −

= =

= = +∑ ∑  
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as , the summation on the right vanishes, and (2.6) is verified. z →∞
 
The final value theorem states that 

1

1
( ) lim(1 ) ( )

z
x z X z−

→
∞ = −        (2.7) 

or 

1
( ) lim( 1) ( )

z
x z X z

→
∞ = −        (2.9) 

 
The proof of this theorem is more involved and will not be discussed here. However this 
can easily be justified. If ( )X z has any pole outside the unit circle, ( )X z  correspond to 
an unstable function and . If ( )x ∞ = ∞ ( )X z has all its poles inside the unit circle, ( )X z  
correspond to a stable function and (x ) 0∞ = .  If ( )X z has a pole on the unit circle but 
not a t , the resulting time-domain response is oscillatory, and 1z = ( )x ∞  is not defined. 
A nonzero steady-state value results from a simple pole at 1z = . A list of some of the z-
transform theorem is given in Table 2.2 
 
 
Real translation – Time delay 
 
If the time sequence ( )x kT  is delayed by  sample periods, the z-transform n ( )X z  is 
multiplied by , i.e.,  nz−
 

1

2

{ ( } ( )                  0    This is simlar to [ ( )] ( )
1{ ( 1) } ( )         1     This is simlar to [ ( ) ] ( )

{ ( 2) } ( )         2    etc

{ ( ) } ( )    

)

  n

x k T X z n x t X s

x k T z X z n x t dx X s
s

x k T z X z n

x k n T z X z

−

−

−

= = =

− = = =

− = =

− =

∫

#

Z

Z

Z

Z

x

x

   

 (2.10) 

 
This can easily be verified. Since the z-transform of the sequence ( )x k n T−  is 

0
{ ( ) } ( )      k

n
x k n T x k n Tz

∞
−

=

− = −∑Z  

Letting , we have m k n= −
 

{ ( ) } )( m n

m n
x k n T x m Tz

∞
− −

=−

− = ∑Z  

 
Since ( )x mT  is assumed zero for 0m < , we change the lower limit in the above 
summation to . Rewriting this expression, we obtain 0m =
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0
{ ( ) } ( ) ( )n m

m

nx k n T z x mT z z X z
∞

− − −

=

− = =∑Z  

 
Real translation – Time advance 
 
In a similar way the time advance shift is obtained and is as follow 
 

1

0
{ ( ) } [ ( ) ( ) ]   

n
n

k
x k n T z X z x kT z

−
−

=

+ = −∑Z k      (2.11) 

 
This relation is very important in transforming the difference equation into z-domain and 
solving for the z-domain variable. The above operator for 1n =  and , become 2n =
  

{ ( 1)} ( ) (0)x k zX z zx+ = −Z        (2.12) 
2 2{ ( 2)} ( ) (0) (1)x k z X z z x z+ = − − xZ      (2.13) 

 
These operational transforms along with the linearity property, multiplication by 
exponential and multiplication by time are summarized in Table 2.2 
 
 
Table 2.2 Operational transform 
 
Theorem s-domain z-domain 
Linearity 
theorem { ( )} ( )ax t sa=L  

{ )} ( )(ax kT za=Z  

Linearity 
theorem 

1 2 1 2{ ( ) ( )} ( ) ( )x t x t X s X s+ = +L 1 2 1 2{ ( ) ( )} ( ) ( )x kT x kT X z X z+ = +Z  

Multiplication 
by 
exponential 

{ ( )} (ate x t X s a− = +L ) ) { ( )} (akT aTe x T X ze− =Z  

Multiplication 
by t 

( ){ ( )}x t dX st
d

= −L  ( ){ ( )} dX zkTx kT Tz
dz

= −Z  

Initial value 
theorem 

(0) lim ( )
s

x sX s
→∞

=  (0) lim ( )
z

x X z
→∞

=  

Final value 
theorem 0

( ) lim ( )
s

x sX s
→

∞ =  1

1

1

( ) (1 ) lim ( )  or

( ) ( 1) lim ( )
z

z

x z X z

x z X z

−

→

→

∞ = −

∞ = −
 

Real-translation, time delay { ( ) } ( )nx k n T z X z−− =Z  

Real-translation, time advance 
1

0
{ ( ) } [ ( ) ( ) ]    

n
n k

k
x k n T z X z x kT z

⇓

−
−

=

+ = −∑Z

Real-translation, time advance (order n=1) { ( 1)} ( ) (0)x k zX z zx+ = −Z  
Real-translation, time advance (order n=2) 2 2{ ( 2)} ( ) (0) (1)x k z X z z x z+ = − − xZ  

{ ( )} ( )X s
X

tx =L {( )} ( )k X z
X

T =Z

s
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Example 2.5 
 
Find the z-transform of the sampled unit ramp function for  ( )tu t 0t >

From the multiplication by theorem ( ){ ( )} dX ztx t Tz
dz

= −Z  

2

( ){ ( )}

1              
1 ( 1

dX ztu t Tz
dz

d zTz Tz
dz z z

= −

−
= − = −

− −

Z

)

 

Therefore, 

 2( ) { ( )}
( 1)

TzX z tu t
z

= =
−

Z

2aTe−

Example 2.6 
 
Find the z-transform of the sampled function 3( ) sin 4tx t e−= t  

We know that 2

sin 4[sin 4 ]
2 cos 4 1
z TkT

z z T
=

− +
Z  

 
From multiplication by exponential theorem { ( )} ( )at aTe x t X ze− =Z , replacing z  by , 
we have 

3tze

3 3

2 6 3 2
3

3 6

sin 4 sin 4[ sin 4 ]
2 cos 4 1 2 cos 4

T T
T

T T T

ze T ze Te kT
z e ze T z ze T e

−
−

− −= =
− + −

Z T+
 

 
MATLAB symbolic Math Toolbox provide ztrans function for performing the z-
transform. 
 
Example 2.7 
 
Use MATLAB to find the z-transform of the sampled function ( ) sinatx t e b−= t  for t . 
We use the following commands 

0>

 
syms  k z a b T 
xk=exp(-a*T*k)*sin(b*T*k); 
Xz=ztrans(xk); 

 
The result is 
 

Xz = 
   z/exp(-a*T)*sin(b*T)/(z^2/exp(-a*T)^2-2*z/exp(-a*T)*cos(b*T)+1) 
 
Upon multiplying the numerator and denominator of the above expression by , we 
obtain the same result as given in Table 2.1. 
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The Inverse z-Transform 
 
There are two methods for finding the inverse z-transform (1) partial fraction expansion 
and (2) the power series method.  Since the z-transform came from the discrete function, 
its inverse transform even though it may be expressed in closed-form the result is valid 
only at the sampling instants.  
 
Inverse z-transform via partial fraction expansion 
 
Recall that the Laplace transform consists of a partial fraction that yields a sum of terms 
leading to exponentials, that is /( )A s a+ . Taking this lead and noting that the discrete 
time functions are related to their z-transform as follows: 

1[ ]         akT k
aT

z ze c
z e z c

− −
−

 = ⇒  − − 
Z Z =  

We thus predict that a partial fraction expansion should be of the following form: 

1 2

( ) Az BzX z
z z z z

= + +
− −

" 

Since the partial fraction expansion of ( )X s  did not contain terms with the numerator 
of the partial fraction expansion, we first form 

s
( ) /X z z  to eliminate the z  term in the 

numerator, perform a partial fraction expansion of ( ) /X z z , and finally multiply the 
result by  to replace the ’s in the numerator. z z
 
Example 2.8 
 
Find the inverse z-transform of  

3( )
( 1)( 0.4)

zX z
z z

=
− −

 

First we find ( )X z
z

 and then perform the partial fraction expansion 

( ) 3 5 5
( 1)( 0.4) ( 1) ( 0.4)

X z
z z z z z

−
= = +

− − − −
 

Multiplying by , we have z
5 5( )

( 1) ( 0.4)
z zX z

z z
−

= +
− −

 

Using the z-transform pair from Table 2.1, the inverse z-transform is 
 

( ) 5 5(0.4)kx kT = −  
From the above expression, we see that 
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0

1

2

3

(0) 5 5(0.4) 0

(1) 5 5(0.4) 3

(2) 5 5(0.4) 4.2

(3) 5 5(0.4) 4.68

( ) 5

x

x

x

x

x

= − =

= − =

= − =

= − =

∞ =
#

 

We can check (0)x , and from the initial and final value theorem ( )x ∞

2
3(0) lim ( ) lim 0

z z

zx X z
z→∞ →∞

= = =  and 
1

3( ) lim( 1) ( ) 5
1 0.4z

x z X z
=

∞ = − = =
−

 

 
Example 2.9 

Find the inverse z-transform of (1 )( )
( 1)(

aT

aT

e zX z
z z e

−

−

−
=

− − )
 

First we find ( )X z
z

 and then perform the partial fraction expansion 

( ) (1 ) 1 1
( 1)( ) ( 1) (

aT

aT aT

X z e
z z z e z z e

−

− −

− −
= = +

− − − − )
 

Multiplying by , we have z

( )
( 1) ( aT

z zX z
z z e−

−
= +

− − )
 

Using Table 2.1, the inverse z-transform is 
( ) 1 akTx kT e−= −  

 
Example 2.10 
 

Find the inverse z-transform of 1( )
( 1)( 0.5

X z
z z

=
− − )

 

First we find ( )X z
z

 and then perform the partial fraction expansion 

( ) 1 2 2 4
( 1)( 0.5) ( 1) ( 0.5

X z
z z z z z z z )

−
= = + +

− − − −
 

 
Multiplying by z , we have 

2 4( ) 2
( 1) ( 0.5

z zX z
z z

−
= + +

− − )
 

Using Table 2.1, the inverse z-transform is 
 

( ) 2 ( ) 2 4(0.5)kx kT kTδ= + −  
MATLAB Symbolic Toolbox provides the function iztrans for finding the inverse z-
transform.  
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Example 2.11 
 
Using MATLAB Symbolic Toolbox find the inverse -transform of the function of 
Example 2.10. 

z

 
We use the following commands 
 

syms  k z  
Xz=1/(z^2-1.5*z+0.5); 
xk=iztrans(Xz,k) 

The result is 
  
 xk = 
          2*charfcn[0](k)+2-4*(1/2)^k 
 
which is the same result as Example 2.10. 
 
Inverse z-transform via power series 
 
This is easily accomplished by long division when ( )X z is expressed as a ratio of 
polynomial in . This method will not result in a closed form solution, but it is useful for 
plotting. In this method we perform the long hand division. 

z

 
Example 2.12 
 
Find the inverse z-transform of the discrete function in Example 2.8 

2

3 3( )
( 1)( 0.4) 1.4 0.4

z zX z
z z z z

= =
− − − +

 

Performing the division, we get 
 

1 2 3

2

1

1

1 2

1 2

1 2

-2 3

3 4.2 4.68
1.4 0.4 3

3 4.2 1.2
       4.2 1.2
       4.2 5.88 1.68
              4.68 1.68
              4.68 6.552 1.872
                          4.872z 1.872

z z z
z z z

z z
z

z z
z z
z z

z

− − −

−

−

− −

− −

3z− − −

−

+ + +
− +

− +
−
− +

−
− +

−

44.872z−

 

 
1 2 3 4( ) 3 4.2 4.68 4.872X z z z z z− − − −= + + + +"  

 
This is the same as the result obtained in Example 2.8.  Long division can be 
accomplished in MATLAB using the command dimpulse. 
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Example 2.13 
 
Using MATLAB find the inverse z-transform of the function in Example 2.12. 
 
We use the following commands 
 
 num = [3 0];  

den =[1 -1.4  0.4]; 
k =5; 
xk = dimpulse(num, den, k) 

The result is 
 

xk = 
0 
3.0000 

      4.2000 
     4.6800 
      4.8720 
The above result is in agreement with the result in Example 2.12. 
 
Example 2.14 

Given the function 
2

2
0.8( )

( 1)( 0.4 0.2
zX z

z z z
=

− − + )
) find the value of (x kT  as  

approaches infinity. 

k

 
Since the function (  does not have any pole on or outside the unit circle in the 
z-plane, the final value theorem can be applied 

1) ( )z X z−

2

21

0.8lim ( ) lim 1
( 0.4 0.2)k z

zx kT
z z→∞ =

= =
− +

 

 
Solution of linear difference equation 
 
The z-transform can be used to obtain the solution of the linear difference equation.  
 
Example 2.15 
 
Find the solution of the first-order zero-input difference  
 

( 1) ( ) 0         given (0) 1y k y k y+ + = =  
From the real translation operator (2.12), the z-transform is 

( ) (0) ( ) 0zY z zy Y z− + =  

( ) (0) (1)
1 1

z zY z y
z z

= =
+ +

 

Expanding Y z  into the power series ( )

 26



1 2 3 4( ) (1 )
       ( 1) (0)      0,  1,  2,k k

Y z z z z z
z y k

− − − −

−

= − + − + +

= − =

"
"

 
(0)y

(0)y
 

* 2 3 4( ) (1 )
       ( 1) (0)      0,  1,  2,  

T T T T

k kT

Y s e e e e
e y k

− − − −

−

= − + − + +

= − =

"
"

 

 
*( ) ( ) ( ) ( 2 ) ( 3 )y t t t T t T t Tδ δ δ δ= − − + − − − +" 

 
Example 2.16 
 
Find the solution of the second order-order difference equation 
 

( 2) 4 ( 1) 3 ( ) ( )y k y k y k kδ+ − + + =  
With and (0) 1,  (1) 0y y= = ( )kδ the discrete impulse function. Taking the z-transform, 
using the real translation relations (2.12, 2.13), we obtain 

2 2( ) (0) (1) 4[ ( ) (0)] 3 ( ) 1z Y z z y zy zY z zy Y z− − − − + =

1

 
Substituting for  and  we have (0)y (1)y

2 2[ 4 3] ( ) 4z z Y z z z− + = − +  
or 

2 2

2 2 2

4 1 4( )
4 3 4 3 4 3

z z z zY z
z z z z z z

1− − +
= + =

− + − + − +
 

Finding ( )Y z
z

 

 
2 2

2

1 1
( ) 4 1 4 1 13 3

( 4 3) ( 1)( 3) 1 3
Y z z z z z

z z z z z z z z z z

−− + − +
= = = +

− + − − − −
+  

Therefore 
1 1( )
3 1 3

z zY z
z z

= + −
− −3

 

1 1( ) ( ) 1 (3)
3 3

kTf kT tδ= − −  

Example 2.17  (Example 11.6 Textbook) 
 
Find the solution of following difference equation in power series form, then use z-
transform to find a closed form solution. 
 

( ) ( ) ( 1) ( 1)           0m k e k e k m k K= − − − − ≥  
where  
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0 1 3 42 k

11         even, i.e.,     0, 2, 4,
( )

0        odd, i.e.,     1,3,5,   
k k

e k
k k

=
=  =

"
"

 
ii

and   
( 1) 0e − = , and  ( 1) 0m − =

 
(a) Solution is obtained by finding the successive values of  for  i.e., ( )m k 0,  1,  2,  k = "

(0) (0) ( 1) ( 1) 1 0 0 1
(1) (1) (0) (0) 0 1 1 2
(2) (2) (1) (1) 1 0 2 3
(3) (3) (2) (2) 0 1 3 4
(4) (4) (3) (3) 1 0 4 5

m e e m
m e e m
m e e m
m e e m
m e e m

= − − − − = − − =
= − − = − − = −
= − − = − + =
= − − = − − = −
= − − = − + =

 

This method can be used efficiently if it is computed using digital computer. 
In MATLAB you can use the following simple command.  
 

ek = 1; ek_1 = 0; mk_1 = 0; 
for n=1:5 

      mk = ek - ek_1 - mk_1; 
      k(n)=n-1; e(n)=ek; m(n)=mk; 
      mk_1 = mk;  
      ek_1 = ek; 
      ek = 1 -ek; 
    end 
   disp(['     k     e     m']) 
   disp([k'   e' m']) 
 
The result is  
      k     e     m 
      0     1     1 
      1     0    -2 
      2     1     3 
      3     0    -4 
      4     1     5 
(b) The z-transform solution. Using the real translation operator (2.10), the z-transform of 
the above equation is 
 

1 1( ) ( ) ( ) ( )M z E z z E z z M z− −= − −  
or 

1

1
1 1( ) ( ) ( )

11
z zM z E z

zz

−

−
− −

= =
++

E z  

Now is given by ( )E z
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2

2
2 4

2 2
1 1( ) 1

1 1 1x z

zE z z z
x z z−

− −
−

=

= + + + = = =
− − −

"  

Therefore 
2

2
1( )
1 1

z zM z
z z
−

=
+ −

 

We can obtain the power series form by long division, which will result in the same 
solution as before, i.e.,  

1 2 3 4( ) 1 2 3 4 5M z z z z z− − − −= − + − + +"  
 
MATLAB has many functions for finding the response of a discrete time system when 
the transfer function or state variable model is known. These are dinitial, dstep, 
dimpulse, and dlsim. Without any left hand argument the response plot is obtaine. If left 
hand argument is used with any of the above function, the values at discrete intervals are 
returned.  
 
Example 2.18 
 
Consider the z-domain transfer function given by 

( ) ( ) ( )Y z G z U z=  
where 

1 2

1 2
0.1 0.25 0.1 0.25( )

1 0.8 0.151 0.8 0.15
z z zG z

zz z

− −

− −
+ +

= =
− +− +

 

and U z  is the z-transform of a step input, i.e., ( ) ( )
( 1

z
z

=
)

U z
−

 

(a) Determine the final value of the step response 
(b) Find the inverse z-transform y(k) 
(c) Use MATLAB dstep function to find the step response. 
 

0.1 0.25 (0.1 0.25)( )
1 0.8 0.15 1 ( 1)( 0.5)( .3)

z z z zY z
z z z z

+ +
= =

− + − − − −
 

Roots of G z are 0.5 and 0.3, which lie inside the unit circle, therefore the response has 
a final value 

( )

 

1 1

(0.1 0.25) 0.1 0.25( ) lim( 1) ( ) lim 1
( 0.5)( 0.3) (0.5)(0.7)z z

z zy z Y z
z z→ →

+ +
∞ = − = = =

− −
 

(b) Performing the partial fraction expansion 
( ) 0.1 0.25 1 3 2

( 1)( 0.5)( 0.3) 1 0.5 0.3
Y z z

z z z z z z z
+ −

= = +
− − − − − −

+  

or 
3 2( )

1 0.5 0.3
z zY z

z z z
−

= + +
− − −

z  

The inverse z-transform is 
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( ) 1 3(0.5) 2y k = −  (0.3)k k+
i.e., 

0 0

1 1

2 2

3 3

4 4

(0) 1 3(.5) 2(0.3) 0

(1) 1 3(.5) 2(0.3) 0.1

(2) 1 3(.5) 2(0.3) 0.43

(3) 1 3(.5) 2(0.3) 0.679

(0) 1 3(.5) 2(0.3) 0.8287

y

y

y

y

y

= − + =

= − + =

= − + =

= − + =

= − + =

 

(c) We use the following commands 
 
 num = [0.1  0.25]; 

den = [1  -0.8  0.15]; 
dstep(num, den)       % Step response plot 
yk=dstep(num, den)    % Returns discrete values 

 
The response is as shown in Figure below.   

 
and the discrete values are 

yk = 
      0 
      0.1000 
      0.4300 
      0.6790 
      0.8287 
      0.9111 
      0.9546 
      0.9770 
      0.9884 
      0.994 
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Simulation diagram and signal flow diagram 
 
In the case of continuous system we have dealt with simulation diagram, which is a 
pictorial representation of the differential equation in time domain. The basic element of 
a continuous system simulation diagram is the integrator. That is the relation  

0
( ) ( )

t
y t x t= ∫  

is represented pictorially as 
 

1
s

or
1s−( )x t ( )y t ( )x t ( )y t

 
Note that the simulation diagram is in time domain and the operator 1

s
, or  is simply 

the notation for the integrator. 

1s−

 
Consider the following continuous time-domain equation 

0 0
( ) ( ) ( ) ( )

t t
m t e t e t m t= − −∫ ∫  

The simulation diagram of the following equation in continuous system is 
 

1
s

or
1s−−

( )e t
( )m t ( )e t ( )m t

1
s

− −
1s−−

1 1

 
Figure 2.2 Continuous system simulation diagram. 

 
We can apply Mason’s gain formula to find the s-domain transfer function 

 
1

1
( ) 1 1( )
( ) 11

M s s sG s
E s ss

−

−
− −

= = =
++

 

 
The basic element in discrete simulation diagram is a memory device known as shift 
register as shown in Figure 2.3(a). Suppose that every T seconds a number is shifted into 
the register, and at that instant, the number that was stored in the register is shifted out. 
Let e k represent the number shifted into the register at an instant, then at that instant, 
the number shifted out is e k . The symbolic representation of this time delay or 
memory and shifting device is shown in the simulation diagram in Figure 2.3(b), along 
with the z-domain simulation diagram in Figure 2.3(c). 

( )
( 1)−

 

TShift
register

1z−( )e K ( 1)e k − ( )e K ( 1)e k −
( )E z 1

( ) { ( 1)

        ( )

M z e k

z E z−

= −

=

Z

(a) (b) (c)  
Figure 2.3 Ideal time-delay element. 
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Consider the difference equation given in Example 2.17 (Example 11.6 Textbook) 
( ) ( ) ( 1) ( 1m k e k e k m k= − − − − )  

 
 
In an analogous manner to the continuous system, we draw the discrete simulation 
diagram using the time-delay or memory and shifting.  

T
1z−−

( )e k
( )m k ( )E z ( )M z

T
− −

1z−−

1 1

 
 

Figure 2.4 Simulation diagram and signal flow graph for the given example 
 
We can apply Mason’s gain formula to the discrete simulation diagram 
 

1

1
( ) 1 1( )
( ) 11

M z z zG z
E z zz

−

−
− −

= = =
++

 

 
State variable model 
 
Given a discrete transfer function, we can use the simulation diagram to obtain the state 
variable model of the system. Consider the following transfer function 
 

1 2
1 0 1 0

1 2 2
1 0 1

( )( )
( ) 1

b z b z b z bY zG z
U z a z a z z a z a

− −

− −
+ +

= = =
+ + + + 0

 

Just like in the case of continuous-time system, there are different state space model 
depending on how the state variables are selected. We obtain the control canonical 
programming form simulation diagram. To do this we rewrite the above transfer function 
in cascade form 
 

( )U z ( )W z ( )Y z
1 2

1 0

1
1 a z a z− −+ +

1 2
1 0b z b z− −+

 
Figure 2.5 Cascade block diagram of the transfer function 

 
Assigning the variable W z at the output of the first block, we have ( )
 

2 1 2 1
0 1 0 1( ) ( ) ( ) ( )     and      ( ) ( ) ( )W z U z a z W z a z W z Y z b z W z b z W z− − − −= − − = +  

 
Utilizing two time delay we can draw the simulation diagram 
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( )U z ( )W z ( )Y z

1a−

1 ( )z W z−

2 ( )z W z−
1z− 1z− 0b1

0a−

1b

 

1( )x k2 ( )x k

Figure 2.6 Control canonical programming form simulation diagram 
 
The next step is to assign a state variable to the output of each time delay, and write an 
equation for the input of each time delay, which results in the following state equation 
 

1 2

2 0 1 1 2

( 1) ( )
( 1) ( ) ( ) (

x k x k
)x k a x k a x k u

+ =
+ = − − + k

)u k

 

and the output equation is 
 

0 1 1 2( ) ( ) ( )y k b x k b x k= +  
or in matrix form 
 

1 1

0 12 2

1
0 1

2

0 1( 1) ( ) 0
( )

( 1) ( ) 1

( )
( ) [ ]

( )

x k x k
u t

a ax k x k

x k
y k b b

x k

+       
= +      − −+      

 
=  

 

     (2.18) 

The generalized standard form of the state equation is written as 
 

( 1) ( ) (
( ) ( ) ( )
k k

y k k u k
+ = +
= +

x Ax B
Cx D

       (2.19) 

 
Example 2.19 
  
Obtain the state variable model for the following z-domain transfer function 
 

1 2

1 2 2
( ) 0.1 0.25 0.1 0.25
( ) 1 0.8 0.15 0.8 0.15

Y z z z z
U z z z z z

− −

− −
+ +

= =
− + − +

 

The cascade block diagram of the above transfer function is 
 

( )U z ( )W z ( )Y z
1 2
1

1 0.8 0.15z z− −− +
1 20.1 0.25z z− −+

 
Therefore 

1 2 1 2( ) ( ) 0.8 ( ) 0.15 ( )     and    ( ) 0.1 ( ) 0.25 ( )W z U z z W z z W z Y z z W z z W z− − − −= + + = +  
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which leads to the following simulation diagram 

( )U z ( )W z ( )Y z

0.8

1 ( )z W z−

2 ( )z W z−
1z− 1z−

0.1

1

0.15−

0.25

 

1( )x k2 ( )x k

Writing the state equation from the simulation diagram, we have 
 
 

1 2

2 1 2

( 1) ( )
( 1) 0.15 ( ) 0.8 ( ) ( )

x k x k
x k x k x k

+ =
+ = − + + u k

 

and the output equation is 
 

1 2( ) 0.25 ( ) 0.1 ( )y k x k x k= +  
Writing in matrix form we have, 
 

[ ]

1 1

2 2

1

2

( 1) ( )0 1 0
( )

( 1) ( )0.15 0.8 1

( )
( ) 0.25 0.1

( )

x k x k
u k

x k x k

x k
y k

x k

+      
= +      + −      

 
=  

 

 

 
MATLAB control system toolbox  [A, B, C, D]=dtf2ss(num, den) obtains the state 
space model from the transfer function. For discrete-time transfer functions, you must 
make the length of the numerator and denominator equal to ensure correct results.   
 
For the above example, we use the following commands 
 

num = [0  0.1  0.25];     % For discrete TF, length of the numerator and  
                                      % denominator must be equal to ensure correct results.  

den = [1  -0.8  0.15]; 
[A, B, C, D]=dtf2ss(num, den) 

 
The result is 

 
A =     B =  

   0.8000   -0.1500                              1 
      1.0000         0                                  0 

C = 
                        0.1000    0.25                          D =        
                                                                                0       
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Note that MATLAB assigns 1( )x k  to the output of the first shift register and 2 ( )x k to the 
output of the second shift register.                 
 
Solution of the state equation 
 
The state equation of discrete systems  

 
( 1) ( ) (k k u+ = +x x B )k

n

       (2.20) 
 
can be solved in power-series form or closed form using z-transformation technique. 
 

a. Power-series solution         
 
Given the input and the initial states , equation (2.20) is solved successively 
for x ,  as follows: 

( )u k
2, ,"

(0)x
( )k 1,k =

            

2

2

3 2

1 2

(1) (0) (0)
(2) (1) (1) [ (0) (0)] (1)

       (0) (0) (1)

(3) (2) (2) [ (0) (0) (1)] (2)

       (0) (0) (1) (2)

( ) (0) (0) (1) (n n n

u
u u u

u u

u u u u

u u u

n u u u n− −

= +
= + = + +

= + +

= + = + + +

= + + +

= + + + +

x Ax B
x Ax B A Ax B B

A x AB B

x Ax B A A x AB B B

A x A B AB B

x A x A B A B AB

#

" 2) ( 1)u n− + −B

        (2.21) 

 
or the general solution is given by 

 

                 (2.22) 
1

1

0
( ) (0) ( )

n
n n k

k
n

−
− −

=

= +∑x A x A Bu k

)z

   
b. z-transform solution of state equation 

 
Taking the z-transform of equation (2.2), we get 
 

[ ( ) (0)] ( ) ( )z z z u z− = +X x AX B  
or 
 

[ ] ( ) (0) (z z z u− = +I A X x B  
Solving for the z-domain state variables, we get 
 

1

zero-input response zero-state response

( ) [ ] (0) [ ] ( )z z z z u z− −= − + −X I A x I A B���	��
 ���	��

1      (2.23) 
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Defining the state transition matrix as 
1 1( ) { [ ] } kk z z− −Φ = − =I A AZ  

 
The discrete-time solution can be expressed as  

1

0
( ) ( ) (0) ( 1 ) ( )

n

k
n n n k u

−

=

= Φ + Φ − −∑x x B k

1
x

     (2.24) 

MATAB control system toolbox has several functions for the solution state equation. 
dinitial(A, B, C, D, X0) plots the time response of the discrete system due to an initial 
condition on the states.  The number of sample points is automatically determined based 
on the system poles and zeros.  dinitial(A, B, C, D, X0, N) uses the user-supplied number 
of points, N. When invoked with left hand arguments [Y,X, N] = dinitial(A,B,C,D,X0,...) 
returns the output and state responses (Y and X), and the number of points (N).  No plot 
is drawn on the screen.  The matrix Y has as many columns as outputs and X has as many 
columns as there are states. dstep(A,B,C,D,IU) plots the response of the discrete system 
to a step applied to the single input IU when there is one input IU is set to 1.  The number 
of points is determined automatically. dstep(A,B,C,D,IU,N) uses the user-supplied 
number of points, N.  When invoked with left hand arguments, [Y,X] = 
dstep(A,B,C,D,...) returns the output and state time history in the matrices Y and X. No 
plot is drawn on the screen.  Y has as many columns as there are outputs and X has as 
many columns as there are states. Also functions dimpulse and dlsim are used for impulse 
response and response to user defined discrete function.  

  
 

Example 2.20 
 
The state variable model of the system in Example 2.19 is 
 

[ ]

0 1 0
( 1) ( ) ( )                (0)

0.15 0.8 1 0

( ) 0.25 0.1 ( )

k k u k

y k k

     
+ = + =     −     
=

x x

x
 

Where is a discrete unit step input.  ( )u k
 
(a) Find the zero-input response 
(b) Find the zero-state response 
 

[ ]

[ ] 1
2

1
0.15 0.8

0.8 1 0.8 1
0.15 0.15

( 0.5)( 0.3)0.8 0.15

z
z

z

z z
z z

z
z zz z

−

− 
− =  − 

− −   
   − −   − = =

− −− +

I A

I A

 

The zero-input solution is 
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1( ) [ ] (0)z z z −= −X I A x  
 
Therefore, 

0.8 1 1 0.8
0.15 0 0.15

( )
( 0.5)( 0.3) ( 0.5)( 0.3

z z
z z

z
z

z z z z

− −    
    − −    = =
− − − −

x
)



  

Therefore, 
0.8 0.15 2.5

( 0.5)( 0.3) ( 0.5) ( 0.3)( )
0.15 0.75 0.75

( 0.5)( 0.3) ( 0.5) ( 0.3)

z
z z z zz

z
z z z z

− −   +  − − − −  = =
− −   +  − − − −  

x







 

or 
0.15 2.5

( 0.5) ( 0.3)
( )

0.75 0.75
( 0.5) ( 0.3)

z z
z z

z
z z

z z

− + − − =
− + − − 

x  

Taking the inverse z-transform, the solution is 
 

1

2

( ) 1.5(0.5) 2.5(0.3)

( ) 0.75(0.5) 0.75(0.3)

k k

k k

x k

x k

= − +

= − +
 

and the output response is 
1 2( ) 0.25 ( ) 0.1 ( )

( ) 0.45(0.5) 0.7(0.3)k k

y k x k x k

y k

= +

= − +
 

For the discrete-time values are 0,1,2,k = "
0 0

1 1

2 2

3 3

4 4

(0) 0.45(0.5) 0.7(0.3) 0.25

(1) 0.45(0.5) 0.7(0.3) 0.015

(2) 0.45(0.5) 0.7(0.3) 0.0495

(3) 0.45(0.5) 0.7(0.3) 0.0374

(4) 0.45(0.5) 0.7(0.3) 0.0225

y

y

y

y

y

= − + =

= − + = −

= − + = −

= − + = −

= − + = −

 

 
(b) The z-domain zero-state response is given by 
 

1( ) [ ] ( )z z u z−= −X I A B  
Therefore, 

0.8 1 10
0.15 1

( )
( 0.5)( 0.3) ( 1) ( 1)( 0.5)( 0.3)

z
z

z zzz
z z z z z z

−    
    −     = =
− − − − − −

X  

or 

 37



1 1/ 0.35 10 1/ 0.14
( 1)( 0.5)( .3)( ) 1 0.5 0.3

1/ 0.35 5 0.3 / 0.14
( 1)( 0.5)( .3) 1 0.5 0.3

z z zz z z z
zz

z z z z z z

  − + +   − − − − − − = =  
−   + +   − − − − − −  

X  

Thus 

 

1/ 0.35 10 1/ 0.14
1 0.5 0.3( )

1/ 0.35 5 0.3 / 0.14
1 0.5 0.3

z z z
z z zz

z z
z z z

− + + − − −=  
− + + − − − 

X
z

 

Taking the inverse z-transform results in 

 
1

2

1 1( ) 10(0.5) (0.3)
0.35 0.14

1 0.3( ) 5(0.5) (0.3)
0.35 0.14

k k

k k

x k

x k

= − +

= − +
 

and 
1 2( ) 0.25 ( ) 0.1 ( )y k x k x k= +  

therefore 
  ( ) 1 3(0.5) 2(0.3)k ky k = − +
For the discrete-time values are 0,1,2,k = "

  

0 0

1 1

2 2

3 3

4 4

(0) 1 3(0.5) 2(0.3) 0

(1) 1 3(0.5) 2(0.3) 0.1

(2) 1 3(0.5) 2(0.3) 0.43

(3) 1 3(0.5) 2(0.3) 0.679

(4) 1 3(0.5) 2(0.3) 0.8287

y

y

y

y

y

= − + =

= − + =

= − + =

= − + =

= − + =
The complete solution is the sum of zero-input response and zero-state response. 
 
Example 2.21   (chd2ex21.m) 
 
Use the MATLAB control system functions dinitial and dstep to obtain the zero-input 
and zero-state response for the system in Example 2.20. 
 
We use the following commands 
 

A = [0  1; -0.15  0.8];  
B = [0;  1]; 
C = [0.25  0.1]; 
D = 0; 
Disp(‘Zero-input response or natural response’) 
x0 = [1; 0]; 
figure(1), dinitial(A, B, C, D, x0), grid  % Step response plot 
[yk, x] = dinitial(A, B, C, D, x0,5)        % Returns zero-input responses y, x1, x2 

 38



        % for 5 points      
 

disp(‘Zero-state response or steady-state response’) 
figure(2), dstep(A, B, C, D,1), grid        % Step response plot 
[yk, x] = dstep(A, B, C, D, 1,  5)    % Returns step responses y, x1, x2 for 5 points 

 
The result is 
 

Zero-input response or natural response  
 
yk = 

0.2500 
     -0.0150 
     -0.0495 
     -0.0374 
     -0.0225 

x = 
 
      1.0000          0 
           0     -0.1500 
     -0.1500   -0.1200 
     -0.1200    -0.0735 
     -0.0735    -0.0408 
 
 
 

 
 
 
Zero-state response or steady-state response 
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yk = 
 0 

      0.1000 
      0.4300 
      0.6790 
      0.8287 

x = 
 
           0          0 
          0      1.0000 
      1.0000    1.8000 
      1.8000     2.2900 
      2.2900     2.5620 
 

 
 

For both cases the MATLAB results are identical with the analytical computations. 
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