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CHAPTER 1 
 
 
Modern Control Design 
 
 
Modern control systems are usually modeled in state-variable form. Modern control 
design is especially useful in multivariable systems. The simplest design is the state 
feedback known as pole-placement design. The pole-placement design allows all roots of 
the system characteristic equation to be placed in desired locations. This results in a 
regulator with constant gain vector . The state-variable feedback concept requires that 
all states be accessible. 

K

 
Pole-Placement Design 
 
Consider the system 
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 Figure 1.1 Open-loop Plant 
 
The objective is to design the controller that would produce a desired response. Consider 
the block diagram of the system shown in Figure 1.2 with the following state feedback 
control 
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FIGURE 1.2 Control system design via pole placement. 

 
where  is a 1  vector of constant feedback gains. The control system input r(t) is 
assumed to be zero. The purpose of this system is to return all state variables to 
equilibrium state or zero state when the states have been perturbed.  

K n×

 
Substituting (1.2) in (1.1), we have 
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where  fA A BK= −           

The compensated system characteristic equation is given by 0fSI A− = , or 

0SI A BK− + =          (1.4) 
 
If the state equation is in phase variable control canonical form, i.e., 
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Then the compensated system characteristic equation becomes 
 

1
1 1 2 0( ) ( ) ( )n n

n nSI A BK s a k s a k s a k−
−− + = + + + + + + + =" 1 0    (1.6) 

 
The design objective is to find the gain matrix  such that the characteristic equation for 
the controlled system is identical to the desired characteristic equation obtained by the 
specified closed-loop poles. For the specified closed-loop pole locations 

K

1,λ− 2 , , λ− "  

nλ− . The desired characteristic equation is 
 

1
1 2 1 1 0( ) ( )( ) ( ) 0n n

c n ns s s s s a s a s aα λ λ λ −
−= + + + = + + + =… "    (1.7) 

 
 
Thus, the gain vector  is obtained by equating coefficients of equations (1.6) and (1.7) K
 
 1i i iK 1aα −= − −          (1.8) 
 
If the state model is not in the phase-variable canonical form, we can use the 
transformation technique of Chapter 3 Section 3.5 to transform the given state model to 
the phase-variable canonical form. The gain factor is obtained for this model and then 
transformed back to confirm with the original model. This procedure results in the 
following formula, known as Ackermann’s formula. 
 
 [ ] 10 0 0 1 ( )cK α−= " S A       (1.9) 
 
where the matrix  known as controllability matrix is given by S
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       (1.10) 2 nS B AB A B A B−=  " 1 
and the notation ( )c Aα  is given by 
 
 1

1 1( ) n n
c n 0A A A A Iα α α−

−= + + + +" α

1

     (1.11) 
 
The function [K, Af ] = placepol(A, B, C, p) is developed for the pole-placement design. 
A, B, C are system matrices and p is a row vector containing the desired closed-loop 
poles. This function returns the gain vector K and the closed-loop system matrix  Also, 
the MATLAB Control System Toolbox contains two functions for pole-placement design. 
Function K = acker(A, B, p) is for single input systems, and function K = place(A, B, 
p), which uses a more reliable algorithm, is for multi-input systems. 

fA

 
The condition that must exist to place the closed-loop poles at the desired location is to be 
able to transform the given state model into phase-variable canonical form. That is, the 
controllability matrix S, given in (1.10), must have a nonzero determinant. This 
characteristic is known as controllability. 
 
Example 1.1 (ChD1Ex1.mdl) 
 
A system is described by 
 

2 3 ( ), (0) 1, (0)x x x u t       given      x  and  x+ − = = = −�� � �  
 
Represent the system in state variable control canonical form. Design a state feedback 
controller to place the closed-loop pole at 4 3j− ± . 
 
Let  
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or in matrix form 
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The desired characteristic equation is given by 
 
  2( ) ( 4 3)( 4 3) 8 25c s s j s j s sα = + − + + = + + = 0
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The compensated system characteristic equation is 
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Comparing the above characteristic equation with the desired characteristic equation, we 
get 
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or using the relation given by (1.8), 1i i iK α − −= − , we get the same results 
 

 1 0 0

2 1 1

25 ( 3) 28
8 2 6

k a
k a

α
α

= − = − − =
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Thus the compensated system is 
 [ ]( ) ( ) ( )fx t A x t A BK x t= = −�  
where  

  [ ]0 1 0 0 1
28 6

3 2 1 25 8fA     
= − =    − −    


− 

 
The Simulink block diagram below is used to simulate the response with the given initial 
condition. The state space block contain the uncompensated matrix A, Column vector B, 
the 2x2 identity matrix C and the column vector zero of size 2 for D. The initial 
conditions are set to [1;  -1]. The matrix gain is set to [28  6]. 
 

 
The response is as shown. 
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Example 1.2 
 
A system is described by 
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Design a state feedback controller to place the closed-loop pole at 3 4j− ±  and . 5−
 
The desired characteristic equation is given by 
 
 

 2 3 2( ) ( 3 4)( 3 4)( 5) ( 6 25)( 5) 11 55 125 0c s s j s j s s s s s s sα = + − + + + = + + + = + + + =
 
Therefore, 0 1 2125, 55, 11      α α α= = = . Also,  0 1 26, 1, 4a    a    a= − = =  
From (1.8), 1 1i i iK aα − −= −  
Hence 
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
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Example 1.3 (Example 8.1 Computational Aids in Control Systems using MATLAB) 
(ChD1Ex3.mdl) 
 
For the plant 
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Design a state feedback controller to place the closed-loop pole at 3 4j− ±  and . 8−
 
The desired characteristic equation is given by 
 
 

 2 3 2( ) ( 3 4)( 3 4)( 8) ( 6 25)( 8) 14 73 200 0c s s j s j s s s s s s sα = + − + + + = + + + = + + + =
 
The given state equation is not in phase variable control canonical form and we use the 
Ackermann’s formula given by (1.9). 
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and ( )c Aα  as given by (1.11) is 
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The state feedback matrix as given by (1.9) is 
 

  [ ] [
1 0 1 140 0 0

0 0 1 0 0.5 1.5 38 102 0 11 51 100
0 0.5 0.5 60 0 200

K
   
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The compensated system matrix fA A BK= =  is 
 

[ ]
1 0 0 11 51 100 12 51 100
1 2 0 0 0 0 1 2 0

1 0 0 0 0 0 1 0 0
fA A BK

− −    
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        

− − 


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The Simulink block diagram below is used to simulate the response with the given initial 
condition. The state space block contain the uncompensated matrix A, Column vector B, 
the 3x3 identity matrix C and the column vector zero of size 3 for D. The initial 
conditions are set to [1;  1; -1]. The matrix gain is set to [11  51  100].  
 

 
 
The response is as shown. 
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For the MATLAB design and the step response see Computational Aids in Control 
Systems using MATLAB, Example 8.1 page 172.  
 
 
Controllability 
A system is said to be controllable when the plant input u can be used to transfer the plant 
from any initial state to any arbitrary state in a finite time. The plant described by (1.1) 
with the system matrix having dimension n n× is completely state controllable if and only 
if the controllability matrix S in (1.10) has a rank of n. The function S = cntrable(A, B) 
is developed which returns the controllability matrix S and determines whether or not the 
system is state controllable. 
 
Observer Design 
 
In the pole-placement approach to the design of control systems, it was assumed that all 
state variables are available for feedback. However, in practice it is impractical to install 
all the sensors which would be necessary to measure all of the states. If the state variables 
are not available because of system configuration or cost, an observer or estimator may 
be necessary. The observer is an estimator algorithm based on the mathematical model of 
the system. The observer creates an estimate ˆ( )x t of the states from the measurements of 
the output . The estimated states, rather than the actual states, are then fed to the 
controller. One scheme is shown in Figure 1.3. 

( )y t

 
( ) 0r t = ( )y t

Plant
( )u t

Estimated
Observer

Controller state x�

−

 
Figure 1.3 State feedback design with an observer 
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Consider a system represented by the state and output equations 
 
 ( ) ( ) ( )x t Ax t Bu t= +�         (1.12) 
          (1.13) ( ) ( )y t Cx t=
Assume that the state ( )x t  is to be approximated by the state ˆ( )x t  of the dynamic 
model 
 
 (ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ))x t Ax t Bu t G y t y t= + + −�       (1.14) 
          (1.15) ˆ ˆ( ) ( )y t Cx t=
 
Subtracting (1.14) from (1.12), and (1.15) from (1.13), we have 
  
 ( ) ( ) (ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ))ˆx t x t A x t x t G y t y t− = − − −��     (1.16) 

        (1.17) ( ) (ˆ( ) ( ) ( ) ( )y t y t C x t x t− = − )ˆ
 
where ˆ( ) ( )x t x t−

ˆ( )y t
 is the error between the actual state vector and the estimated vector, and 

 is the error between the actual output and the estimated output. Substituting 
the output equation into the state equation, we obtain the equation for the error between 
the estimated state vector and the actual state vector. 

( )y t −

 
        (1.18) ( )( ) ( ) ( )ee t A GC e t A e t= − =�
where 
 
         (1.19) ˆ( ) ( ) ( )e t x t x t= −
 
If  is chosen such that eigen values of matrix G A GC−  all have negative real parts, then 
the steady-state value of the estimated state vector error e t  for any initial condition will 
tend to zero. That is, 

( )
ˆ( )x t  will converge to ( )x t . The design of the observer is similar to 

the design of the controller. However, the eigen values of A GC− must be selected to the 
left of the eigen values of . This ensures that the observer dynamic is faster than the 
controller dynamic for providing a rapid updated estimate of the state vector. 

A

 
The estimator characteristic equation is given by 
 
 0SI A GC− + =         (1.20) 
For a specified speed of response, the desired characteristic equation for the estimator is 
 
       (1.21) 1

1 1 0( ) 0n n
c ns s a s a s aα −

−= + + + ="
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Thus, the estimator gain G  is obtained by equating coefficients of (1.20) and (1.21). This 
is identical to the pole-placement technique, and G  is found by the application of 
Ackermann’s formula 
 

        (1.22) 

1

1

0
0

( )

1

c

n

C
CA

G A

CA

α

−

−

  
  
  =
  
  
  

# #








 
and the notation ( )c Aα  is given by 
 
 1

1 1( ) n n
c nA A A A 0Iα α α−

−= + + + +" α      (1.23) 
 
 
The function [G,  Ae] = observer(A, B, C, ep ) is developed for the estimator. ep  is the 
desired estimator eigen values. This function returns the gain vector G and the closed-
loop system matrix  . fA
 
The necessary condition for the design of an observer is that all the states can be observed 
from the measurements of the output. This characteristic is known as observability. 
 
 
Example 1.4 (Example 8.3 Computational Aids in Control Systems using MATLAB) 
 
For the plant 
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x x

x
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      
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      
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Design a full-state observer such that the observer is critically damped with eigen values 
at , and . 8− 8−
 
 
The desired characteristic equation is given by 
  
  2( ) ( 8)( 8) 16 64 0c s s s s sα = + + = + + =

 
2

2 0 1 0 1 1 0 80 16
( ) 16 64 16 64

16 0 16 0 0 1 256 80c A A A Iα
      

= + + = + + =


       
       
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  [ ] [ ] [ ]0 1
1 0 , 1 0 0 1

16 0
C     CA  
= = = 

 

  

1 10 80 16 1 0
( )

1 256 80 0 1 1

80 16 0 16
256 80 1 80

c

C
G A

CA

                                  

α
− −

         
= =         

         
    

= =    
    

0





  
 
Observability 
 
A system is said to be observable if the initial vector x(t) can be found from the 
measurement of u(t) and y(t). The plant described by (1.12) is completely state 
observable if the inverse matrix in (1.22) exists. The function V=obsvable(A, C) returns 
the observability matrix V and determines whether or not the system is state observable. 
 
Combined Controller-Observer Design 
 
Consider the system represented by the state and output equations (1.12) and (1.13) with 
the state feedback control based on the observed state ˆ( )x t  given by 
  
          (1.24) ˆ( ) ( )u t Kx t= −
 
Substituting for  in (1.12), we have ( )u t
  
 ˆ( ) ( ) ( )x t Ax t BKx t= −�  
 
Substituting for ˆ( )x t from e t , the state equation becomes ˆ( ) ( ) ( )x t x t= −
  
 ( ) ( ) ( ) ( )x t A BK x t BKe t= − +�        (1.25) 
 
Combining the above equation with the error equation given by (1.19), we have 
 

 
( ) ( )
( ) 0 ( )

x t A BK BK x t
e t A GC e t

−    
=    −     

�
�


       (1.26) 

 
The function [K, G, Ac] = placeobs(A, B, C, p, pe) is developed for the combined 
controller-observer design. A is the system matrix, B is the input column vector, and C is 
the output row vector. p is a row vector containing the desired closed-loop poles and pe is 
the desired observer eigen values. The function displays the gain vectors K and G, open-
loop plant transfer function, and the controlled system closed-loop transfer function. 
Also, the function returns the gain vector K, and the combined system matrix in (1.26). 
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Example 1.5 (Example 8.4 Computational Aids in Control Systems using MATLAB) 
 
For the system of Example 1.4 design a controller-observer system such that the desired closed-
loop poles for the system are at − ± . Choose the eigen values of the observer gain matrix to 
be . 

1 j2

1 2 8e ep p= = −
Controller Design 
 
The desired characteristic equation is given by 
 
  2( ) ( 1 2)( 1 2) 2 5 0c s s j s j s sα = + − + + = + + =

0 15, 2   α α= =  
Since the state equation is in phase variable control canonical form we use the relation 
given by (1.8), 1 1i i iK aα − −= −  
 
  0 116, 0a    a= − =
 
From (1.8), 1 1i i iK aα − −= −  
Hence 
 

 1 0 0

2 1 1

5 ( 16) 21
2 0 2

k a
k a

α
α

= − = − − =
= − = − =

 

or  
 [ ]21 2K =  
 
Observer Design 
 
The observer was designed in Example 4 

  
16
80

G  
=  
 

The combined controller observer system matrix is given by 26 
 

For the MATLAB design and the step response see Computational Aids in Control 
Systems using MATLAB, Example 8.1 page 177.  

[ ] [ ]

[ ]

0 1 0 0 0 1 0 021 2 21 2
16 0 1 1 5 2 21 2

0 00 1 16
0 1 0

0 0 64 016 0 80

A BK BK
A GC

        −        − −          = =     − −      −      −       

0 16 1
−

 
Optimal Regulator Design  
 
Refer to computational Aids in Control Systems using MATLAB Section 8.6 page 180. 
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Transforming the combined controller-observer state equation to transfer function 
model 
 
The dynamic equation of the observer model in Figure 1.3 was given by equations (1.14) 
and (1.15) as 
   
 (ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ))x t Ax t Bu t G y t y t= + + −�       (1.27) 
          (1.28) ˆ ˆ( ) ( )y t Cx t=
 
and the control law is given by 
 
          (1.29) ˆ( ) ( )u t Kx t= −
 
Substituting for from (1.28) and from (1.29) into (1.27) results in ˆ( )y t ( )u t
 ˆ ˆ( ) [ ] ( ) ( )x t A BK GC x t Gy t= − − +�       (1.30) 
or 
 ˆ ˆ( ) ( ) ( )cex t A x t Gy t= +�         (1.31)    
where    
 [ ]         (1.32) ceA A BK GC= − −
 
Taking Laplace transform of (1.31) and (1.29), we have 
 
        (1.33) ( ) ( ) ( )cesX s A X s GY s= +
         (1.34) ( ) ( )U s KX s= −
Solving for ( )X s from (1.33) 
  
 1( ) [ ] ( )ceX s sI A GY s−= −        (1.35) 
 
Substituting for ( )X s  in (1.34) results in 
  
  1( ) [ ] ( )ceU s K sI A GY s−= − −
or 

 1( ) [ ]
( ) ce ce

U s K sI A G G s
Y s

−= − − = − ( )  

Therefore 

 1( ) [ ]
( )ce ce

Y sG K sI A
U s

−= = − G

] G

 

Substituting for , the combined controller observer transfer function is ceA
  
       (1.36) 1[ceG K sI A BK GC −= − + +
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We can now draw the block diagram representation of the above equation, where the 

minus sign in ( ) ( )
( ) ce

Y s G s
U s

= − is incorporated in the summing point. 

 

−

( ) 0r t =
( )ceG s ( )pG s

( )Y s( )U s

 
 

Figure 1.4 Cascade representation of the controller-estimator 
 
Given an input , the closed loop transfer function becomes ( )r t
 

 
( ) ( )( )

( ) 1 ( ) ( )
ce p

ce p

G s G sR s
Y s G s G s

=
+

      (1.37) 

 
Therefore the closed-loop characteristic equation is 
 
        (1.38) 1 ( ) ( )ce pG s G s+ 0=
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