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CHAPTER

2

THREE-PHASE SYSTEMS

21 BALANCED THREE-PHASE CIRCUITS

The generation, transmission and distribution of electric power isaccomplished by
means of three-phase circuits. At the generating station, three sinusoida voltages
are generated having the same amplitude but displaced in phase by 120°. Thisis
called a balanced source. If the generated voltages reach their peak values in the
sequential order ABC, the generator is said to have a positive phase sequence,
shown in Figure 2.11(a). If the phase order is ACB, the generator is said to have a
negative phase sequence, as shown in Figure 2.11(b).

In a three-phase system, the instantaneous power delivered to the external
loads is constant rather than pulsating asit isin a single-phase circuit. Also, three-
phase motors, having constant torque, start and run much better than single-phase
motors. This feature of three-phase power, coupled with the inherent efficiency of
itstransmission compared to single-phase (lesswirefor the same delivered power),
accounts for its universal use.

A power system has Y-connected generators and usualy includes both A-
and Y-connected |oads. Generators are rarely A-connected, because if the voltages
are not perfectly balanced, there will be a net voltage, and consequently a circulat-
ing current, around the A. Also, the phase voltages are lower in the Y-connected
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ECn EBn

EAn EAn
EBn (a) ECn (b)
FIGURE 2.1

(a) Positive, or ABC, phase sequence. (b) Negative, or ACB, phase sequence.

generator, and thuslessinsulation is required. Figure 2.2 shows a Y-connected gen-
erator supplying balanced Y-connected loads through athree-phase line. Assuming
a positive phase sequence (phase order ABC) the generated voltages are:

Eun = |Ep|L0°
Ep, = |E,|/—120° (2.1)
Ecy, = |Bp|/—240°
In power systems, great care is taken to ensure that the loads of transmission lines
are balanced. For balanced loads, the termina voltages of the generator Va,,, Vi,

and V¢, and the phase voltages V,,,,, Vi, and V., at theload terminals are ba anced.
For “phase A" these are given by

VAn = EAn - ZGIa (22)
Van = VAn - ZLIa (23)

2.2 Y-CONNECTED LOADS

To find the relationship between the line voltages (line-to-line voltages) and the
phase voltages (line-to-neutral voltages), we assume a positive, or ABC, sequence.
We arbitrarily choose the line-to-neutral voltage of the a-phase as the reference,
thus

Van = |V, | £0°
Vin = |V, |£—120° (2.4)
Ven = |V, | £—240°
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VAn ZL Van

FIGURE 2.2
A Y-connected generator supplying a Y-connected load.

where |V}, | represents the magnitude of the phase voltage (line-to-neutral voltage).
Thelinevoltages at the load terminalsin terms of the phase voltages are found
by the application of Kirchhoff’s voltage law

Vb = Van — Vi = |Vp|(1£0° — 1/-120°) = V/3|V},|/30°
Vie = Vin — Ve = [Vp|(1/—120° — 1/-240°) = V/3|V,|/—90°  (25)
Vea =Ven — Van = |V;7|(]-Z_24:0O - 1100) = \/§|V;7|11500

The voltage phasor diagram of the Y-connected loads of Figure 2.2 is shown in
Figure 2.3. Therelationship between the line voltages and phase voltages is demon-
strated graphically.

If the rms value of any of the line voltages is denoted by V7, then one of the
important characteristics of the Y-connected three-phase load may be expressed as

Vi, = V3|V,|/30° (2.6)

Thus in the case of Y-connected loads, the magnitude of the line voltage is
/3 times the magnitude of the phase voltage, and for a positive phase sequence,
the set of line voltages leads the set of phase voltages by 30°.
Thethree-phase currentsin Figure 2.2 al so possess three-phase symmetry and
are given by
v

I, =" =|I,|]/ -0
a Zp P



2.3. A-CONNECTED LOADS 21

Vca Vcn o _Vab

/ /

/ /
/ /
30°
dVan
Vin
Ve

FIGURE 2.3

Phasor diagram showing phase and line voltages.

Vin
Iy= -2 —|L|/—120° — 0 2.7)
Zp

<

I. = =% = |I,|/—240° — 0
c Zp P

where 6 is the impedance phase angle.
The currents in lines are aso the phase currents (the current carried by the
phase impedances). Thus
IL = Ip (28)

23 A-CONNECTED LOADS

A balanced A-connected load (with equal phase impedances) is shown in Fig-
ure 2.4.
It is clear from the inspection of the circuit that the line voltages are the same
as phase voltages.
V=Y, (2.9)

Consider the phasor diagram shown in Figure 2.5, where the phase current I, is
arbitrarily chosen as reference. we have

Iy = |I,| £0°
Iye = |1, £—120° (2.10)
Iq = |1, £ —240°

where |I,,| represents the magnitude of the phase current.
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FIGURE 2.4
A A-connected load.
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FIGURE 2.5
Phasor diagram showing phase and line currents.

The relationship between phase and line currents can be obtained by applying
Kirchhoff’s current law at the corners of A.

Io = Iy — Io = || (1£0° — 1/—240°) = /3|I,|/—30°
Iy = Ipe — Iy = |I,|(1/—120° — 1/0°) = /3|I,|/—150° (211
Io = Iy — Ipe = |I,|(1£—240° — 1/—120°) = /3|,|£90°

The relationship between the line currents and phase currents is demonstrated
graphically in Figure 2.5.
If the rms of any of the line currents is denoted by I;,, then one of the impor-
tant characteristics of the A-connected three-phase load may be expressed as

I, = V3|1, /—30° (2.12)

Thus in the case of A-connected loads, the magnitude of the line current is v/3
times the magnitude of the phase current, and with positive phase sequence, the set
of line currents lags the set of phase currents by 30°.
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24 A-Y TRANSFORMATION

For analyzing network problems, it is convenient to replace the A-connected cir-
cuit with an equivalent Y-connected circuit. Consider the fictitious Y-connected
circuit of Zy Q/phase which is equivalent to a balanced A-connected circuit of
Z QIphase, as shown in Figure 2.6.

FIGURE 2.6
(a) A to (b) Y-connection.

For the A-connected circuit, the phase current I, is given by
Vab E Vab + Vac

I, =2 = Jab T Tac 2.13
Zn | Zn Za (213)

V}m Vac

FIGURE 2.7
Phasor diagram showing phase and line voltages.

The phasor diagram in Figure 2.7 shows the relationship between balanced phase
and line-to-line voltages. From this phasor diagram, we find

Vb + Vae = V3 |Van | £30° + V3 |Van | L—30° (2.14)
= 3Van (2.15)
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Substituting in (2.13), we get

- Yer
or
Van = Z—gAIa (2.16)
Now, for the Y-connected circuit, we have
Van = Zy 1, (2.17)
Thus, from (2.16) and (2.17), we find that
Zy = Z—gA (2.18)

25 PER-PHASE ANALYSIS

The current in the neutral of the balanced Y-connected loads shown in Figure 2.2
isgiven by
L,=1,+1,+1.=0 (2.19)

Since the neutral carries no current, a neutral wire of any impedance may be re-
placed by any other impedance, including a short circuit and an open circuit. The
return line may not actually exist, but regardless, a line of zero impedance is in-
cluded between the two neutral points. The balanced power system problems are
then solved on a“per-phase” basis. It is understood that the other two phases carry
identical currents except for the phase shift.

We may then look at only one phase, say “phase A,” consisting of the source
Van inserieswith Zy, and Z,, as shown in Figure 2.8. The neutral istaken as datum
and usually asingle-subscript notation is used for phase voltages.

If the load in athree-phase circuit is connected in a A, it can be transformed
into a'Y by using the A-to-Y transformation. When the load is balanced, the
impedance of each leg of the Y is one-third the impedance of each leg of the A, as
given by (2.18), and the circuit is modeled by the single-phase equivalent circuit.

26 BALANCED THREE-PHASE POWER

Consider a balanced three-phase source supplying a balanced Y- or A- connected
load with the following instantaneous voltages

Van = V2|Vj| cos(wt + 6,)
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FIGURE 2.8
Single-phase circuit for per-phase analysis.

Vpn, = V2|V,| cos(wt + 0, — 120°) (2.20)
Ven = V2|V, | cos(wt + 0, — 240°)
For abalanced load the phase currents are
ia = V2|I,| cos(wt + 6;)
iy = V2|I,| cos(wt + 6; — 120°) (2.21)
ie = V21| cos(wt + ; — 240°)
where |V,| and |Ip| are the magnitudes of the rms phase voltage and current, re-
spectively. The total instantaneous power is the sum of the instantaneous power of
each phase, given by
P3yp = Vanta + Vbntb + Venle (222

Substituting for the instantaneous voltages and currents from (2.20) and (2.21) into
(2.22)

p3p = 2|Vpl|Ip| cos(wt + 6,) cos(wt + 6;)
+2|Vp||Ip| cos(wt + 6, — 120°) cos(wt + 6; — 120°)
+2|V, ||| cos(wt + 6, — 240°) cos(wt + 6; — 240°)
Using the trigonometric identity (??)
p3s = |Vpl|Ip|lcos (8, — 6;) 4 cos(2wt + 6, + 6;)]
+|Vp||Ip|[cos (0, — 6;) + cos(2wt + 6, + 6; — 240°)] (2.23)
+| Vol Ip|[cos(0y — 0;) + cos(2wt + 6, + 6; — 480°)]

The three double frequency cosine termsin (2.23) are out of phase with each other
by 120° and add up to zero, and the three-phase instantaneous power is

P3g = 3|Vp||Ip| cos 6 (2.24)
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# = 6, — 0, isthe angle between phase voltage and phase current or the impedance
angle.

Note that although the power in each phase is pulsating, the tota instanta
neous power is constant and equa to three times the real power in each phase. In-
deed, this constant power is the main advantage of the three-phase system over the
single-phase system. Since the power in each phase is pulsating, the power, then,
is made up of the real power and the reactive power. In order to obtain formula
symmetry between real and reactive powers, the concept of complex or apparent
power (S) is extended to three-phase systems by defining the three-phase reactive
power as

Qsp =3[Vl Iy sin 0 (2.25)

Thus, the complex three-phase power is

S3p = P3p + jQ3¢ (2.26)

or
Sz = 3V, I (2.27)

Equations (2.24) and (2.25) are sometimes expressed in terms of the rms
magnitude of the line voltage and the rms magnitude of the line current. In a Y-
connected load the phase voltage |V,| = |V1|/+v/3 and the phase current I,, = Iy,
In the A-connection V, = V;, and |I,,| = |I.,|/+/3. Substituting for the phase volt-
age and phase currents in (2.24) and (2.25), the real and reactive powers for either
connection are given by

P3y = V3|V ||T1| cos 6 (2.28)

and
Q34 = V3|Vi||IL|sin 6 (2.29)

A comparison of the last two expressions with (2.24) and (2.25) shows that the
equation for the power in a three-phase system is the same for either aY or a A
connection when the power is expressed in terms of line quantities.

When using (2.28) and (2.29) to calculate the total real and reactive power,
remember that 6§ isthe phase angle between the phase voltage and the phase current.
Asin the case of single-phase systems for the computation of power, it is best to
use the complex power expression in terms of phase quantities given by (2.27).
The rated power is customarily given for the three-phase and rated voltage is the
line-to-line voltage. Thus, in using the per-phase equivalent circuit, care must be
taken to use per-phase voltage by dividing the rated voltage by v/3.

Example 2.7
A three-phase line has an impedance of 2 + j4 Q asshown in Figure 2.9.
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FIGURE 2.9

Three-phase circuit diagram for Example 2.7.

The line feeds two balanced three-phase loads that are connected in parallel. The
firstload is Y-connected and has an impedance of 30+ 540 £2 per phase. The second
load is A-connected and has an impedance of 60 — j45 €. The line is energized
at the sending end from a three-phase balanced supply of line voltage 207.85 V.
Taking the phase voltage V, as reference, determine:

(a) Thecurrent, real power, and reactive power drawn from the supply.

(b) The line voltage at the combined |oads.

(c) Thecurrent per phase in each load.

(d) Thetotal real and reactive powers in each load and the line.

(a) The A-connected load is transformed into an equivalent Y. The impedance per
phase of the equivalent Y is
60 — 545

Zy 3

=20 — j15 Q

The phase voltage is
207.85
Vi =
VG

The single-phase equivalent circuit is shown in Figure 2.10.
Thetotal impedanceis

=120V

(30 + j40)(20 — j15)
(30 + j40) + (20 — j15)
=24 4422 —j4=24Q

Z =24 j4+

With the phase voltage V,,,, as reference, the current in phase a is

V; 120/0°
= 2L

7 o1 oA
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FIGURE 2.10

Single-phase equivalent circuit for Example 2.7.

The three-phase power supplied is
S = 3ViI* = 3(120£0°)(5£0°) = 1800 W
(b) The phase voltage at the load terminal is

Vy = 120£0° — (2 + j4)(5£0°) = 110 — 420
=111.8/-10.3° V

Theline voltage at the load terminal is
Vaap = V3 £30° Vo = /3 (111.8)£19.7° = 193.64/19.7° V

(c) The current per phase in the Y-connected load and in the equivalent Y of the A
load is

Vo 110 — j20 .
L=2= 708 9= 2936/ — 63.4° A
LT 2T T30 + 440 J

Vo 110 — j20 .
Iy= 22 = I 49— 4.472/26.56° A
2= T 20415 1

The phase current in the original A-connected load, i.e., 1, iS given by

LB 44T2/2656°
T B-300  V3/-30°

(d) The three-phase power absorbed by each load is

= 2.582/56.56° A

Sy = 3Volt = 3(111.8/ — 10.3°)(2.236£63.4°) = 450 W + 5600 var
Sy = 3VaIi = 3(111.8/ — 10.3°)(4.472/ —26.56°) = 1200 W — 900 var

The three-phase power absorbed by the lineis

St = 3(Rp, + X 1) |I> = 3(2 4 j4)(5)% = 150 W + 5300 var
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Itisclear that the sum of load powers and line losses is equal to the power delivered
from the supply, i.e.,

S 4 Sy + S, = (450 + 5600) + (1200 — 7900) + (150 + 5300)
= 1800 W + 50 var

Example 2.8

A three-phase line has an impedance of 0.4 + j2.7 € per phase. The line feeds two
balanced three-phase loads that are connected in paralel. Thefirst load is absorb-
ing 560.1 KVA at 0.707 power factor lagging. The second load absorbs 132 kW at
unity power factor. The line-to-line voltage at the load end of the lineis 3810.5 V.
Determine:

(a) The magnitude of the line voltage at the source end of the line.
(b) Total real and reactive power lossin the line.
(c) Real power and reactive power supplied at the sending end of the line.

(a) The phase voltage at the load terminals is
38105

V — =2200V
T
The single-phase equivalent circuit is shown in Figure 2.11.
7 04+52.7Q
ao+W_IYW
+ YN I
1 Vo = 2200/0°
no —
FIGURE 2.11

Single-phase equivalent diagram for Example 2.8.
Thetotal complex power is

Sr3¢) = 560.1(0.707 + j0.707) + 132 = 528 + j396
= 660/36.87° kKVA

With the phase voltage V; as reference, the current in thelineis

 Shae) 660,000/ —36.87°

I= = = 100/—36.87° A
3V 3(220020°)
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The phase voltage at the sending end is
V1 =2200/0° + (0.4 4+ j2.7)100/ —36.87° = 2401.7/4.58° V
The magnitude of the line voltage at the sending end of thelineis
VL] = V3|Vi| = V/3(2401.7) = 4160 V
(b) The three-phase power lossinthelineis

S1(3e) = 3R|I)? + 73X |I)* = 3(0.4)(100)? + j3(2.7)(100)?
= 12 kW + 581 kvar

(¢) The three-phase sending power is
Ss(3p) = 3VAT" = 3(2401.7/4.58°)(100/36.87°) = 540 KW + j477 kvar

It is clear that the sum of load powers and the line losses is equa to the power
delivered from the supply, i.e.,

SS(3¢) = SR(3¢) + SL(3¢) = (528 4 5396) + (12 + j81) = 540 kW+ 5477 kvar





